Skip to main content

Thermodynamic Equilibria in Systems with Nanoparticles

  • Chapter
  • First Online:
Thermal Physics and Thermal Analysis

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 11))

Abstract

Thermodynamic description of systems with nanoparticles in the frame of the Gibbs theory of interfaces is presented. Although much attention has been paid to thermodynamic modelling of nanosystems, the calculation of phase diagrams of nanoalloys as well as the assessment of effects of surface-related phenomena on the solubility of nanoparticles and gas–solid reactions, some discrepancy still remains dealing with the expression of the surface contribution to molar Gibbs energy and chemical potential of components. It is shown that due to the non-extensive nature of the surface area, these contributions are different for molar and partial molar quantities. The consistent expressions for molar Gibbs energy and chemical potentials of components of spherical nanoparticles are put forward along with the correct forms of equilibrium conditions. Moreover, the applicability of the shape factor α = A non-spherical/A spherical (V non-spherical = V spherical) which is used in the expressions involving surface-to-volume ratio of non-spherical particles is addressed. A new parameter, the differential shape factor α′ = dA non-spherical/dA spherical (V non-spherical = V spherical, dV non-spherical = dV spherical), is proposed which should be used in equilibrium conditions based on the equality of chemical potentials. The enhanced solubility of paracetamol nanoparticles in water and thermal decomposition of GaN nanowires are demonstrated as examples of size effect in nanosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goswami GK, Nanda KK (2012) Thermodynamic models for the size-dependent melting of nanoparticles: different hypotheses. Current Nanosci 8:305–311

    Article  Google Scholar 

  2. Xue YQ, Zhao MZ, Lai WP (2013) Size-dependent phase transition temperatures of dispersed systems. Phys B 408:134–139

    Article  CAS  Google Scholar 

  3. Li ZH, Truhlar DG (2014) Nanothermodynamics of metal nanoparticles. Chem Sci 5:2605–2624

    Article  CAS  Google Scholar 

  4. Yang CC, Mai YW (2014) Thermodynamics at the nanoscale: a new approach to the investigation of unique physicochemical properties of nanomaterials. Mater Sci Eng R 79:1–40

    Article  Google Scholar 

  5. Šesták J (2015) Kinetic phase diagrams as a consequence of sudden changing temperature or particle size. J Ther Anal Calorim 120:129–137

    Article  Google Scholar 

  6. Eichhammer Y, Heyns M, Moelans N (2011) Calculation of phase equilibria for an alloy nanoparticle in contact with a solid nanowire. CALPHAD 35:173–182

    Article  CAS  Google Scholar 

  7. Garzel G, Janczak-Rusch J, Zadbyr L (2012) Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect. CALPHAD 36:52–56

    Article  CAS  Google Scholar 

  8. Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold-copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726

    Google Scholar 

  9. Sim K, Lee J (2014) Phase stability of Ag–Sn alloy nanoparticles. J Alloys Compd 590:140–146

    Article  CAS  Google Scholar 

  10. Sopoušek J, Vřešťál J, Pinkas J, Brož P, Buršík J, Stýskalík A, Škoda D, Zobač O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39

    Article  Google Scholar 

  11. Kroupa A, Káňa T, Buršík J, Zemanová A, Šob M (2015) Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn. Phys Chem Chem Phys 17:28200–28210

    Article  CAS  Google Scholar 

  12. Ghasemi M, Zanolli Z, Stankovski M, Johansson J (2015) Size- and shape-dependent phase diagram of In–Sb nano-alloys. Nanoscale 7:17369–17387

    Article  Google Scholar 

  13. Bajaj S, Haverty MG, Arróyave R, Goddard FRSCWA III, Shankare S (2015) Phase stability in nanoscale material systems: extension from bulk phase diagrams. Nanoscale 7:9868–9877

    Article  CAS  Google Scholar 

  14. Kaptay G (2012) On the size and shape dependence of the solubility of nano-particles in solutions. Int J Pharm 430:253–257

    Article  CAS  Google Scholar 

  15. Du J, Zhao R, Xue Y (2012) Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: an theoretical and experimental study. J Chem Thermodyn 55:218–224

    Article  CAS  Google Scholar 

  16. Murdande SB, Shah DA, Dave RH (2015) Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals. J Pharm Sci 104:2094–2102

    Article  CAS  Google Scholar 

  17. Navrotsky A (2011) Nanoscale effects on thermodynamics and phase equilibria in oxide systems. ChemPhysChem 2011:2207–2215

    Article  Google Scholar 

  18. Chung SW, Guliants EA, Bunker CE, Jelliss PA, Buckner SW (2011) Size-dependent nanoparticle reaction enthalpy: oxidation of aluminum nanoparticles. J Phys Chem Solids 72:719–724

    Article  CAS  Google Scholar 

  19. Kang SY, Mo Y, Ong SP, Ceder G (2014) Nanoscale stabilization of sodium oxides: implication for Na-O2 batteries. Nano Lett 14:1016–1020

    Article  CAS  Google Scholar 

  20. Li M, Altman EI (2014) Cluster-size dependent phase transition of Co oxides on Au(111). Surf Sci 619:L6–L10

    Article  CAS  Google Scholar 

  21. Cui Z, Duan H, Li W, Xue Y (2015) Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials. J Nanopart Res 17:321 (11 pp)

    Google Scholar 

  22. Hill TL (2001) A different approach to nanothermodynamics. Nano Lett 1:273–275

    Article  CAS  Google Scholar 

  23. García-Morales V, Cervera J, Pellicer J (2005) Correct thermodynamic forces in Tsallis thermodynamics: connection with Hill nanothermodynamics. Phys Lett A 336:82–88

    Article  Google Scholar 

  24. Turmine M, Mayaffre A, Letellier P (2004) Nonextensive approach to thermodynamics: analysis and suggestion, and application to chemical reactivity. J Phys Chem B 108:18980–18987

    Article  CAS  Google Scholar 

  25. Letellier P, Mayaffre A, Turmine M (2007) Solubility of nanoparticles: nonextensive thermodynamics approach. J Phys: Condens Matter 19:436229 (9 pp)

    Google Scholar 

  26. Letellier P, Mayaffre A, Turmine M (2007) Melting point depression of nanosolids: nonextensive thermodynamics approach. Phys Rev B 76:045428 (8 pp)

    Google Scholar 

  27. Qi WH, Wang MP (2004) Size and shape dependent melting temperature of metallic nanoparticles. Mater Chem Phys 88:280–284

    Article  CAS  Google Scholar 

  28. Qi WH, Wang MP, Liu QH (2005) Shape factor of nonspherical nanoparticles. J Mater Sci 40:2737–2739

    Article  CAS  Google Scholar 

  29. Tanaka T, Iida T (1994) Application of a thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res 65:21–28

    Article  CAS  Google Scholar 

  30. Tanaka T, Hack K, Iida T, Hara S (1996) Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. Z Metallknd 87:380–389

    CAS  Google Scholar 

  31. Picha R, Vřešťál J, Kroupa A (2004) Prediction of alloy surface tension using a thermodynamic database. CALPHAD 28:141–146

    Article  CAS  Google Scholar 

  32. Tanaka T, Kitamura T, Back IA (2006) Evaluation of surface tension of molten ionic mixtures. ISIJ Int 46:400–406

    Article  CAS  Google Scholar 

  33. Nakamoto M, Kiyose A, Tanaka T, Holappa L, Hämäläinen M (2007) Evaluation of the surface tension of ternary silicate melts containing Al2O3, CaO, FeO, MgO or MnO. ISIJ Int 47:38–43

    Article  CAS  Google Scholar 

  34. Hanao M, Tanaka T, Kawamoto M, Takatani K (2007) Evaluation of surface tension of molten slag in multi-component systems. ISIJ Int 47:935–939

    Article  CAS  Google Scholar 

  35. Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface Sci 159:198–212

    Article  CAS  Google Scholar 

  36. Cahn JW (1980) Surface stress and the chemical equilibrium of small crystals—I. The case of the isotropic surface. Acta Metall 28:1333–1338

    Article  CAS  Google Scholar 

  37. Jesser WA, Shneck RZ, Gile WW (2004) Solid-liquid equilibria in nanoparticles of Pb-Bi alloys. Phys Rev B 69:144121 (13 pp)

    Google Scholar 

  38. Cammarata RC (1997) Surface and interface stress effects on interfacial and nanostructured materials. Mater Sci Eng A 237:180–184

    Article  Google Scholar 

  39. Cammarata RC (2008) Generalized surface thermodynamics with application to nucleation. Phil Mag 88:927–948

    Article  CAS  Google Scholar 

  40. Cammarata RC (2009) Generalized thermodynamics of surfaces with applications to small solid systems. In: Egrenreich H, Spaepen F (eds) Solid state physics, vol 61. Elsevier, Amsterdam, p 1

    Google Scholar 

  41. Espeau P, Céolin R, Tamarit JL, Perrin MA, Gauchi JP, Leveiller F (2005) Polymorphism of paracetamol: relative stabilities of the monoclinic and orthorhombic phases inferred from topological pressure-temperature and temperature-volume phase diagrams. J Pharm Sci 94:524–539

    Article  CAS  Google Scholar 

  42. Hendriksen BA, Grant DJW (1995) The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen). J Cryst Growth 156:252–260

    Article  CAS  Google Scholar 

  43. Prasad KVR, Ristic RI, Sheen DB, Sherwood JN (2001) Crystallization of paracetamol from solution in the presence and absence of impurity. Int J Pharm 215:29–44

    Article  CAS  Google Scholar 

  44. Omar W, Mohnicke M, Ulrich J (2006) Determination of the solid liquid interfacial energy and thereby the critical nucleus size of paracetamol in different solvents. Cryst Res Technol 41:337–343

    Article  CAS  Google Scholar 

  45. Lerk CF, Schoonen AJM, Fell JT (1976) Contact angles and wetting of pharmaceutical powders. J Pharm Sci 65:843–847

    Article  CAS  Google Scholar 

  46. Duncan-Hewitt W, Nisman R (1993) Investigation of the surface free energy of pharmaceutical materials from contact angle, sedimentation, and adhesion measurements. J Adhesion Sci Technol 7:263–283

    Article  CAS  Google Scholar 

  47. Heng JYY, Bismarck A, Lee AF, Wilson K, Williams DR (2006) Anisotropic surface energetics and wettability of macroscopic form I paracetamol crystals. Langmuir 22:2760–2769

    Article  CAS  Google Scholar 

  48. Alander EM, Rasmusson AC (2007) Agglomeration and adhesion free energy of paracetamol crystals in organic solvents. AIChE J 53:2590–2605

    Article  Google Scholar 

  49. Sedmidubský D, Leitner J (2006) Calculation of the thermodynamic properties of AIII nitrides. J Cryst Growth 286:66–70

    Article  Google Scholar 

  50. Sedmidubský D, Leitner J, Svoboda P, Sofer Z, Macháček J (2009) Heat capacity and phonon spectra of AIIIN. Experimental and calculation. J Therm Anal Calorim 95:403–407

    Article  Google Scholar 

  51. Moon WH, Kim HJ, Choi CH (2007) Molecular dynamics simulation of melting behaviour of GaN nanowires. Scripta Mater 56:345–348

    Article  CAS  Google Scholar 

  52. Wang Z, Zu X, Gao F, Weber WJ (2007) Size dependence of melting of GaN nanowires with triangular cross sections. J Appl Phys 101:043511 (4 pp)

    Google Scholar 

  53. Guisbiers G, Liu D, Jiang Q, Buchaillot L (2010) Theoretical predictions of wurtzite III-nitride nano-materials properties. Phys Chem Chem Phys 12:7203–7210

    Article  CAS  Google Scholar 

  54. Antoniammal P, Arivuoli D (2012) Size and shape dependence of melting temperature of gallium nitride nanoparticles. J Nanomater 2012:415797 (11 pp)

    Google Scholar 

  55. Reeber RR, Wang K (2000) Lattice parameters and thermal expansion of GaN. J Mater Res 15:40–44

    Article  CAS  Google Scholar 

  56. Assael MJ, Armyra IJ, Brillo J, Stankus SV, Wu J, Wakeham WA (2012) Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J Phys Chem Ref Data 41:033101 (16 pp)

    Google Scholar 

  57. Gomes MC, Leite DMG, Sambrano JR, Dias da Silva JH, de Souza AR, Beltrán A (2011) Thermodynamic and electronic study of Ga1–xMnxN films. A theoretical study. Surf Sci 605:1431–1437

    Article  CAS  Google Scholar 

  58. Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation, grant number No. 13-20507S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Leitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leitner, J., Sedmidubský, D. (2017). Thermodynamic Equilibria in Systems with Nanoparticles. In: Šesták, J., Hubík, P., Mareš, J. (eds) Thermal Physics and Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-45899-1_18

Download citation

Publish with us

Policies and ethics