Skip to main content

Decomposition-Based Approach for Solving Large Scale Multi-objective Problems

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

Decomposition is a well-established mathematical programming technique for dealing with multi-objective optimization problems (MOPs), which has been found to be efficient and effective when coupled to evolutionary algorithms, as evidenced by MOEA/D. MOEA/D decomposes a MOP into several single-objective subproblems by means of well-defined scalarizing functions. It has been shown that MOEA/D is able to generate a set of evenly distributed solutions for different multi-objective benchmark functions with a relatively low number of decision variables (usually no more than 30). In this work, we study the effect of scalability in MOEA/D and show how its efficacy decreases as the number of decision variables of the MOP increases. Also, we investigate the improvements that MOEA/D can achieve when combined with coevolutionary techniques, giving rise to a novel MOEA which decomposes the MOP both in objective and in decision variables space. This new algorithm is capable of optimizing large scale MOPs and outperforms MOEA/D and GDE3 when solving problems with a large number of decision variables (from 200 up to 1200).

C.A.C. Coello—Author Gratefully acknowledges support from CONACyT project no. 221551.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonio, L.M., Coello Coello, C.A.: Use of cooperative coevolution for solving large scale multiobjective optimization problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC 2013), Cancún, México, 20–23 June 2013, pp. 2758–2765. IEEE Press (2013). ISBN 978-1-4799-0454-9

    Google Scholar 

  2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  3. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Durillo, J., Nebro, A., Coello Coello, C., Garcia-Nieto, J., Luna, F., Alba, E.: A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)

    Article  MATH  Google Scholar 

  5. Durillo, J.J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba, E.: A Comparative study of the effect of parameter scalability in multi-objective metaheuristics. In: 2008 Congress on Evolutionary Computation (CEC 2008), Hong Kong, June 2008, pp. 1893–1900. IEEE Service Center

    Google Scholar 

  6. Ehrlich, P.R., Raven, P.H.: Butterflies and plants: a study in coevolution. Evolution 18(4), 586–608 (1964)

    Article  Google Scholar 

  7. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, Scotland, September 2005, vol. 1, pp. 443–450. IEEE Service Center

    Google Scholar 

  8. Omidvar, M.N., Li, X., Yao, X., Yang, Z.: Cooperative co-evolution for large scale optimization through more frequent random grouping. In: 2010 IEEE Congress on Evolutionary Computation (CEC), vol. 1, pp. 1–8, September 2010

    Google Scholar 

  9. Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 967–974. ACM, New York (2005)

    Google Scholar 

  10. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866. Springer, Heidelberg (1994)

    Google Scholar 

  11. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  12. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  13. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press (2008)

    Google Scholar 

  14. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  15. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Miguel Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Miguel Antonio, L., Coello Coello, C.A. (2016). Decomposition-Based Approach for Solving Large Scale Multi-objective Problems. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics