Skip to main content

Fundamental Principles of Stem Cell Banking

  • Chapter
  • First Online:
Biobanking and Cryopreservation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 951))

Abstract

Stem cells are highly promising resources for application in cell therapy, regenerative medicine, drug discovery, toxicology and developmental biology research. Stem cell banks have been increasingly established all over the world in order to preserve their cellular characteristics, prevent contamination and deterioration, and facilitate their effective use in basic and translational research, as well as current and future clinical application. Standardization and quality control during banking procedures are essential to allow researchers from different labs to compare their results and to develop safe and effective new therapies. Furthermore, many stem cells come from once-in-a-life time tissues. Cord blood for example, thrown away in the past, can be used to treat many diseases such as blood cancers nowadays. Meanwhile, these cells stored and often banked for long periods can be immediately available for treatment when needed and early treatment can minimize disease progression. This paper provides an overview of the fundamental principles of stem cell banking, including: (i) a general introduction of the construction and architecture commonly used for stem cell banks; (ii) a detailed section on current quality management practices; (iii) a summary of questions we should consider for long-term storage, such as how long stem cells can be stored stably, how to prevent contamination during long term storage, etc.; (iv) the prospects for stem cell banking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMI:

Acute myocardial infarction

CFC:

Colony-forming cells

CGMP:

Current good manufacturing practice

CJD:

Creutzfeldt-Jakob disease

CMV:

Cytomegalovirus

DNA:

Deoxyribonucleic acid

EBV:

Epstein-Barr virus

EMA:

European Medicines Agency

ESCs:

Embryonic stem cells

FDA:

Food and Drug Administration

GMP:

Good manufacturing practice

GvHD:

Graft versus host disease

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HSCs:

Hematopoietic stem cells

HTLV:

Human T-cell leukemia virus

ICH:

International conference on harmonization

iPSCs:

Induced pluripotent stem cells

LAL:

Limulus amebocyte lysate test method

MCB:

Master cell bank

MSCs:

Mesenchymal stem cells

NRA:

National regulatory authority

PCR:

Polymerase chain reaction

QA:

Quality assurance

QC:

Quality control

SNP:

Single nucleotide polymorphism

SPCs:

Spermatogonial stem cells

STR:

Short tandem repeat

UCB:

Umbilical cord blood

WCB:

Working cell bank

WHO:

World Health Organization

References

  1. National Institute of Health web site http://stemcells.nih.gov/info/scireport/pages/chapter1.aspx. Accessed Feb 2016

  2. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  CAS  PubMed  Google Scholar 

  3. Gluckman E, Broxmeyer HA, Auerbach AD et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  6. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  7. Deshpande HA, Akkala S, Rasquinha S et al (2015) Stem cell banking: an update on current scenario. Indian J Res Pharm Biotechnol 3:392

    Google Scholar 

  8. Khanna A, Shin S, Rao MS (2008) Stem cells for the treatment of neurological disorders. CNS Neurol Disord Drug Targets 7:98–109

    Article  CAS  PubMed  Google Scholar 

  9. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  10. Resnick IB, Shapira MY, Slavin S (2005) Nonmyeloablative stem cell transplantation and cell therapy for malignant and non-malignant diseases. Transpl Immunol 14:207–219

    Article  CAS  PubMed  Google Scholar 

  11. M.F.A O, D N, M.J.A S (2010) Biobanks information paper. J Law Inf Sci 20:97–227

    Google Scholar 

  12. Efthymiou AG, Rao M, Lowenthal J (2014) Banking of pluripotent stem cells: issues and opportunities from the NIH perspective. In: Stem cell banking. Springer, New York, pp 77–93

    Google Scholar 

  13. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  14. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  15. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  16. Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Mineral Res 18:696–704

    Article  Google Scholar 

  17. Luong MX, Smith KP, Crook JM et al (2012) Biobanks for pluripotent stem cells. In: Loring JF, Peterson SE (eds) Human stem cell manual: a laboratory guide. Elsevier Inc, Amsterdam, pp. 105–125

    Google Scholar 

  18. Mirabet V, Solves P (2013) Cryopreservation of hematopoietic stem cells from umbilical cord blood for transplantation. In: Stem cells and cancer stem cells, vol 9. Springer, dordrecht, pp 3–11

    Google Scholar 

  19. Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stewart JA (2005) Cancer management: a multidisciplinary approach. Oncology:1272–1272

    Google Scholar 

  21. Qian X, Villa-Diaz LG, Krebsbach PH (2013) Advances in culture and manipulation of human pluripotent stem cells. J Dent Res 92:956–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wesselschmidt RL, Schwartz PH (2011) The stem cell laboratory: design, equipment, and oversight. Methods Mol Biol 767:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cobo F, Stacey GN, Cortes JL et al (2006) Environmental monitoring in stem cell banks. Appl Microbiol Biotechnol 70:651–662

    Article  CAS  PubMed  Google Scholar 

  24. Kiatpongsan S, Wacharaprechanont T, Tannirandorn Y (2006) Embryonic stem cell bank. J Med Assoc Thai = Chotmaihet Thangphaet 89:1055–1063

    PubMed  Google Scholar 

  25. Stacey G (2004) Fundamental issues for cell-line banks in biotechnology and regulatory affairs. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 437–452

    Google Scholar 

  26. European Medicines Agency (Emea) (2008) Guideline on human cell-based medical products

    Google Scholar 

  27. FDA (2008) Content and review of Chemistry, Manufacturing, and Control (CMC) Information for human somatic cell therapy Investigational New Drug Applications (INDs)

    Google Scholar 

  28. WHO (2010) Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks

    Google Scholar 

  29. Coecke S, Balls M, Bowe G et al (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim: ATLA 33:261–287

    CAS  PubMed  Google Scholar 

  30. International Stem Cell Banking I (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314

    Article  Google Scholar 

  31. OECD (2007) OECD best practice guidelines for biological resource centres. Website http://www.oecd.org/sti/biotech/oecdbestpracticeguidelinesforbiologicalresourcecentres.htm. Accessed Mar 2016

  32. FDA (2010) Good laboratory practice for nonclinical laboratory. Website http://www.reginfo.gov/public/do/eAgendaViewRule?pubId=201004&RIN=0910-AG47. Accessed Jan 2016

  33. Niazi SK EU Guidelines to good manufacturing practice: medicinal products for human and veterinary use

    Google Scholar 

  34. FDA (2007) Guidance for industry: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products (HCT/Ps)

    Google Scholar 

  35. Food, Drug Administration HHS (2004) Eligibility determination for donors of human cells, tissues, and cellular and tissue-based products. Final rule. Fed Regist 69:29785–29834

    Google Scholar 

  36. Anonymous (2009) Identity crisis. Nature 457:935–936

    Google Scholar 

  37. Asn- ATCCSDOW (2010) Cell line misidentification: the beginning of the end. Nat Rev Cancer 10:441–448

    Google Scholar 

  38. Lorsch JR, Collins FS, Lippincott-Schwartz J (2014) Cell biology. Fixing problems with cell lines. Science 346:1452–1453

    Article  CAS  PubMed  Google Scholar 

  39. Barallon R, Bauer SR, Butler J et al (2010) Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues. In Vitro Cell Develop Biol Animal 46:727–732

    Article  Google Scholar 

  40. Butler JM (2006) Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci 51:253–265

    Article  CAS  PubMed  Google Scholar 

  41. Dirks WG, Drexler HG (2013) STR DNA typing of human cell lines: detection of intra-and interspecies cross-contamination. In: Basic cell culture protocols. Springer, Dordrecht, pp 27–38

    Google Scholar 

  42. Yu M, Selvaraj SK, Liang-Chu MM et al (2015) A resource for cell line authentication, annotation and quality control. Nature 520:307–311

    Article  CAS  PubMed  Google Scholar 

  43. China Food and Drug Administration (CFDA). http://eng.sfda.gov.cn/WS03/CL0755/. Accessed Jan 2016

  44. FDA (1993) Points to consider in the characterization of cell lines used to produce biologicals. Center for Biologics Evaluation and Research, Rockville

    Google Scholar 

  45. FDA (1998) Guidance for industry Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  46. Macpherson I, Montagnier L (1964) Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23:291–294

    Article  CAS  PubMed  Google Scholar 

  47. Petricciani JC, Levenbook I, Locke R (1983) Human muscle: a model for the study of human neoplasia. Invest New Drugs 1:297–302

    Article  CAS  PubMed  Google Scholar 

  48. Ema ICH Topic Q 6 B specifications: test procedures and acceptance criteria for biotechnological/biological products

    Google Scholar 

  49. Emea/Chmp (2007) guideline on potency testing of cell-based immunotherapy medicinal products for the treatment of cancer

    Google Scholar 

  50. FDA (2011) Guidance for industry: potency tests for cellular and gene therapy products. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research, Rockville

    Google Scholar 

  51. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfusion Med Hemother 38:107–123

    Article  Google Scholar 

  52. Andrews PW, Baker D, Benvinisty N et al (2015) Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 10:1–44

    Article  CAS  PubMed  Google Scholar 

  53. Benson EE, Betsou F, Fuller BJ et al (2013) Translating cryobiology principles into trans-disciplinary storage guidelines for biorepositories and biobanks: a concept paper. CryoLetters 34:277–312

    CAS  PubMed  Google Scholar 

  54. Ballesteros D, Estrelles E, Walters C et al (2011) Effect of storage temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis. CryoLetters 32:89–98

    CAS  PubMed  Google Scholar 

  55. Baust J, Gage A, Klossner D et al (2007) Issues critical to the successful application of cryosurgical ablation of the prostate. Technol Cancer Res Treat 6:97–109

    Article  CAS  PubMed  Google Scholar 

  56. Tedder R, Zuckerman M, Brink N et al (1995) Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346:137–140

    Article  CAS  PubMed  Google Scholar 

  57. Kyuwa S, Nishikawa T, Kaneko T et al (2003) Experimental evaluation of cross-contamination between cryotubes containing mouse 2-cell embryos and murine pathogens in liquid nitrogen tanks. Exp Anim 52:67–70

    Article  CAS  PubMed  Google Scholar 

  58. Day JG, Stacey G (2007) Cryopreservation and freeze-drying protocols. Springer, Dordrecht

    Google Scholar 

  59. Winter JM, Jacobson P, Bullough B et al (2014) Long-term effects of cryopreservation on clinically prepared hematopoietic progenitor cell products. Cytotherapy 16:965–975

    Article  CAS  PubMed  Google Scholar 

  60. Yong KW, Pingguan-Murphy B, Xu F et al (2015) Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Scientific reports

    Google Scholar 

  61. Chen YK, Liu QH, Li J et al (2010) Effect of long-term cryopreservation on physiological characteristics, antioxidant activities and lipid peroxidation of red seabream (Pagrus major) sperm. Cryobiology 61:189–193

    Article  CAS  PubMed  Google Scholar 

  62. Daley GQ, Scadden DT (2008) Prospects for stem cell-based therapy. Cell 132:544–548

    Article  CAS  PubMed  Google Scholar 

  63. ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?term=ips+cell. Accessed Feb 2016

  64. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  65. Freeman BT, Jung JP, Ogle BM (2015) Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS One 10:e0136199

    Article  PubMed  PubMed Central  Google Scholar 

  66. Samsonraj RM, Rai B, Sathiyanathan P et al (2015) Establishing criteria for human mesenchymal stem cell potency. Stem Cells 33:1878–1891

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preparation of this report was supported by National Natural Science Foundation of China (No. 31401259) and the Shenzhen Municipal Government of China (NO. JCYJ20140418203036946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sun, C., Yue, J., He, N., Liu, Y., Zhang, X., Zhang, Y. (2016). Fundamental Principles of Stem Cell Banking. In: Karimi-Busheri, F., Weinfeld, M. (eds) Biobanking and Cryopreservation of Stem Cells. Advances in Experimental Medicine and Biology, vol 951. Springer, Cham. https://doi.org/10.1007/978-3-319-45457-3_3

Download citation

Publish with us

Policies and ethics