Skip to main content

Microelectromechanical Systems and Packaging

  • Chapter
  • First Online:
Materials for Advanced Packaging

Abstract

Microelectromechanical systems (MEMS) technology enables us to create different sensing and actuating devices integrated with microelectronic, optoelectronic, radiofrequency (RF), thermal, and mechanical devices for advanced microsystems. In all these systems that demand low cost and small size, MEMS packaging is usually a major consideration. The relationship between MEMS and packaging, however, is not limited to packaging of MEMS devices. MEMS devices can in fact be used to enhance packaging technologies for microelectronic, optoelectronic, and RF systems. In addition, packaging technologies can be applied to fabricate MEMS devices. Therefore, packaging and MEMS technologies are essential to integrate sensors and actuators with other components on a single system platform. There is a great opportunity to apply MEMS and packaging technologies to develop fully integrated micro/nanosystems for smartphones, wearable electronics, and Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YC (2008) Chapter 17: microelectromechanical systems and packaging. In: Daniel L, Wong CP (eds) Materials for advanced packaging. Springer, New York, pp 601–627

    Google Scholar 

  2. Lee YC (2007) MEMS packaging and reliability. In: Suhir E, Lee YC, Wong CP (eds) Micro- and opto-electronic materials and structures: physics, mechanics, design, reliability, packaging. Springer, New York

    Google Scholar 

  3. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC, Boca Raton

    Google Scholar 

  4. Senturia SD (2000) Microsystem design (Hardcover). Springer, Berlin

    Google Scholar 

  5. Roberts CM, Long LH, Ruggerio PA (1994) Method for separating circuit dies from a wafer. US Patent 5362681

    Google Scholar 

  6. Felton LE, Hablutzel N, Webster WA, Harney KP (2004) Chip scale packaging of a MEMS accelerometer. In: Proceedings of the 54th electronic components and technology conference, pp 869–873

    Google Scholar 

  7. Lee YC, Parviz BA, Chiou A, Chen S (2003) Packaging for microelectromechanical and nanoelectromechanical systems. IEEE Trans Adv Packag 26(3):217–226

    Article  Google Scholar 

  8. Riley GA (2004) Wafer-level hermetic cavity packaging. Adv Packag 3(5):21–24

    Google Scholar 

  9. Tseng A, Tang WC, Lee YC, Allen J (2001) NSF 2000 workshop on manufacturing of micro-electro-mechanical systems. J Mater Process Manuf Sci 8(4):292–360

    Article  Google Scholar 

  10. Heck J, Bar H, Chou TKA, Tran Q, Ma Q, Weinfeld B, Rao V (2007) A stamp-sealed microshell package for RF MEMS switches. In: ASME InterPACK ‵07, Vancouver, British Columbia, Canada, paper # IPACK2007-33887, 8–12 July 2007

    Google Scholar 

  11. Candler RN, Hopcroft MA, Kim B, Park WT, Melamud R, Agarwal M, Yama G, Partridge A, Lutz M, Kenny TW (2006) Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J Microelectromech Syst 15(6):1446–1456

    Article  Google Scholar 

  12. Graham AB, Messana MW, Hartwell PG, Provine J, Yoneoka S, Melamud R, Kim B, Howe RT, Kenny TW (2010) A method for wafer-scale encapsulation of large lateral deflection MEMS devices. J Microelectromech Syst 19(1):28–37

    Article  Google Scholar 

  13. Melamud R, Chandorkar SA, Kim B, Lee HK, Salvia JC, Bahl G, Hopcroft MA, Kenny TW (2009) Temperature-insensitive composite micromechanical resonators. J Microelectromech Syst 18(6):1409–1419

    Article  Google Scholar 

  14. Yang Y, Ng EJ, Chen Y, Flader IB, Kenny TW (2016) A unified epi-seal process for fabrication of high-stability microelectromechanical devices. J Microelectromech Syst 25(3):1–9

    Article  Google Scholar 

  15. Joseph PJ, Monajemi P, Ayazi F, Kohl PA (2007) Wafer-level packaging of micromechanical resonators. IEEE Trans Adv Packag 30(1):19–26

    Article  Google Scholar 

  16. Uzunlar E, Kohl PA (2015) Size-compatible, polymer-based air-gap formation processes, and polymer residue analysis for wafer-level MEMS packaging applications. J Electron Packag 137:041001-1-13

    Article  Google Scholar 

  17. Uzunlar E, Schwartz J, Phillips O, Kohl PA (2016) Decomposable and template polymers: fundamentals and applications. J Electron Packag 138(2):020802-020802-15. doi:10.1115/1.4033000

    Article  Google Scholar 

  18. Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89:031915

    Article  Google Scholar 

  19. Chen TN, Wuu DS, Wu CC, Chiang CC, Chen YP, Horng RH (2007) Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications. Plasma Process Polym 4:180–185

    Article  Google Scholar 

  20. Groner MD, George SM, McLean RS, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88:051907

    Article  Google Scholar 

  21. Moro L, Krajewski TA, Rutherford NM, Philips O, Visser RJ, Gross M, Bennett WD, Graff G (2004) Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. Proc SPIE 5214:83–93

    Article  Google Scholar 

  22. Lee SH, Lee SW, Najafi K (2007) A generic environment-resistant packaging technology for MEMS. In: TRANSDUCERS 2007 solid-state sensors, actuators and microsystems conference, 10–14 June 2007, pp 335–338

    Google Scholar 

  23. Velten T, Ruf HH, Barrow D, Aspragathos N, Lazarou P, Jung E, Malek CK, Richter M, Kruckow J, Wackerle M (2005) Packaging of Bio-MEMS: strategies, technologies, and applications. IEEE Trans Adv Packag 28(4):533–546

    Article  Google Scholar 

  24. Focke M, Kosse D, Muller C, Reinecke H, Zengerle R, Von F (2010) Lab-on-a-Foil: microfluidics on thin and flexible films. Lab Chip 10:1365–1386

    Article  Google Scholar 

  25. Faheem FF, Gupta KC, Lee YC (2003) Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors. IEEE Trans Microwave Theory Tech 51(12):2562–2567

    Article  Google Scholar 

  26. Faheem FF, Lee YC (2004) Tether- and post-enabled flip-chip assembly for manufacturable RF-MEMS. Sensors Actuators A-114(2-3):486–495

    Article  Google Scholar 

  27. Chow EM, Chua C, Hantschel T, Van Schuylenbergh K, Fork DK (2006) Pressure contact micro-springs in small pitch flip-chip packages. IEEE Trans Compon Packag Technol 29(4):796–803

    Article  Google Scholar 

  28. Cheng BW, Bruyker DD, Chua C, Sahasrabuddhe K, Shubin I, Cunningham JE, Luo Y, Böhringer KF, Krishnamoorthy AV, Chow EM (2013) Microspring characterization and flip-chip assembly reliability. IEEE Trans Compon Packag Manuf Technol 3(2):187–196

    Article  Google Scholar 

  29. Kacker K, Sokol T, Yun W, Swaminathan M, Sitaraman SK (2007) A heterogeneous array of off-chip interconnects for optimum mechanical and electrical performance. J Electron Packag 129(4):460–468

    Article  Google Scholar 

  30. Xu PY, Pfeiffenberger AH, Ellis CD, Hamilton MC (2014) Fabrication and characterization of double helix structures for compliant and reworkable electrical interconnects. J Microelectromech Syst 23(5):1219–1227

    Article  Google Scholar 

  31. Okereke RI, Sitaraman SK (2015) Mixed array of compliant interconnects to balance mechanical and electrical characteristics. J Electron Packag 137:031006-1-9

    Article  Google Scholar 

  32. Dang B, Bakir MS, Patel CS, Thacker HD, Meindl JD (2006) Sea-of-leads MEMS I/O interconnects for low-k IC packaging. J Microelectromech Syst 15:523–530

    Article  Google Scholar 

  33. Shubin I, Chow EM, Chow A, Bruyker DD, Thacker HD, Fujimoto K, Raj K, Krishnamoorthy AV, Mitchell JG, Cunningham JE (2013) Package demonstration of an interposer with integrated TSVs and flexible compliant interconnects. In: IEEE 2013 electronic components & technology conference, 978-1-4799-0232-3/13, pp 329–333

    Google Scholar 

  34. Kim HS, Liao HH, Lee BH, Kenny TW (2006) Design and verification of a low-powered pre-programmable in-package temperature controller. In: ASME international mechanical engineering congress and exposition, Chicago, IL, IMECE2006-15136, Nov 2006

    Google Scholar 

  35. Ishikawa K, Zhang J, Tuantranont A, Bright VM, Lee YC (2003) An integrated micro-optical system for VCSEL-to-fiber active alignment. Sensors Actuators A-103:109–115

    Article  Google Scholar 

  36. Kitagawa H, Boteler DJ, Lee YC (2006) Thermo-mechanical behavior of a micro-mirror for laser-to-fiber active alignment. In: Proceedings of ASME international mechanical engineering congress and exposition, Chicago, 5–10 Nov 2006

    Google Scholar 

  37. Bardinal V, Camps T, Reig B, Abada S, Daran E, Doucet JB (2015) Advances in polymer-based optical MEMS fabrication for VCSEL beam shaping. IEEE J Sel Top Quantum Electron 21(4):2700308

    Article  Google Scholar 

  38. Filipovic DS, Popovic Z, Vanhille K, Lukic M, Rondineau S, Buck M, Potvin G, Fontaine D, Nichols C, Sherrer D, Zhou S, Houck W, Fleming D, Daniel E, Wilkins W, Sokolov V, Evans T (2006) Modeling, design, fabrication, and performance of rectangular μ-coaxial lines and components. In: IEEE MTT-S international microwave, symposium digest, 11–16 June 2006, pp 1393–1396

    Google Scholar 

  39. Lukic M, Rondineau S, Popovic Z, Filipovic DS (2006) Modeling of realistic rectangular μ-coaxial lines. IEEE Trans Microwave Theory Tech 54:2068–2076

    Article  Google Scholar 

  40. Vanhille KJ, Fontaine DL, Nichols C, Popovic Z, Filipovic DS (2007) Ka-band miniaturized quasi-planar high-Q resonators. IEEE Trans Microwave Theory Tech 55:1272–1279

    Article  Google Scholar 

  41. Ehsan N, Cullens E, Vanhille K, Frey D, Rondineau S, Actis R, Jessup S, Lender JR, Immorlica A, Nair D, Filipovi’c D, Popovi’c Z (2009) Micro-coaxial lines for active hybrid-monolithic circuits. In: IEEE MTT-S international microwave symposium digest, MTT ‵09, 7–12 June 2009, pp 465–468

    Google Scholar 

  42. Harsh KF, Bright VM, Lee YC (1999) Solder self-assembly for three-dimensional micro-electromechanical systems. Sensors Actuators A 77:237–244

    Article  Google Scholar 

  43. Tan Q, Lee YC, Itoh M (2005) Soldering technology for optoelectronic packaging. In: Boudreau R, Boudreau S (eds) Passive micro-optical alignment methods. CRC Press, Boca Raton

    Google Scholar 

  44. Kladitis PE, Linderman RJ, Bright VM (2001) Solder self-assembled micro axial flow fan driven by a scratch drive actuator rotary motor. In: The 14th IEEE international conference on micro electro mechanical systems, 21–25 Jan 2001, pp 598–601

    Google Scholar 

  45. Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2006) RF MEMS capacitive switches fabricated using printed circuit processing techniques. IEEE/ASME J Microelectromech Syst 15(6):1595–1604

    Article  Google Scholar 

  46. Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2007) MEMS capacitive series switch fabricated using PCB technology. Int J RF Microwave Comput Aided Eng 17(4):387–397

    Article  Google Scholar 

  47. Stassi S, Cauda V, Canavese G, Pirri CF (2014) Flexible tactile sensing based on piezoresistive composites: a review. Sensors (Basel) 14(3):5296–5332

    Article  Google Scholar 

  48. Cheng MY, Lin CL, Yang YJ (2010) Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes. In: IEEE 23rd international conference on micro electro mechanical systems (MEMS), 24–28 Jan 2010, pp 228–231

    Google Scholar 

  49. Vasudev A, Kaushik A, Jones K, Bhansali S (2013) Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Microfluid Nanofluid 14:683–702

    Article  Google Scholar 

  50. Sadler DJ, Changrani R, Roberts P, Chou CF, Zenhausern F (2003) Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices. IEEE Trans Compon Packag Technol 26(2):309–316

    Article  Google Scholar 

  51. Sobocinski M, Juuti J, Jantunen H, Golonka L (2009) Piezoelectric unimorph valve assembled on an LTCC substrate. Sensors Actuators A 149:315–319

    Article  Google Scholar 

  52. Laws AD, Lee YC (2007) Thermal and structural analysis of a suspended physics package for a chip-scale atomic clock. In: ASME InterPACK’07, Vancouver, 8–13 July 2007

    Google Scholar 

  53. Kitching J, Knappe S, Hollberg L (2002) Miniature vapor-cell atomic-frequency references. Appl Phys Lett 81:553–555

    Article  Google Scholar 

  54. Knappe S, Shah V, Schwindt P, Hollberg L, Kitching J, Liew LA, Moreland J (2004) A microfabricated atomic clock. Appl Phys Lett 85:1460–1462

    Article  Google Scholar 

  55. Theis T, Ganssle P, Kervern G, Knappe S, Kitching J, Ledbetter MP, Budker D, Pines A (2011) Parahydrogen-enhanced zero-field nuclear magnetic resonance. Nat Phys 7:571–575

    Article  Google Scholar 

  56. Dai X, Famouri M, Abdulagatov AI, Yang R, Lee YC, George SM, Li M (2013) Capillary evaporation on micromembrane-enhanced microchannel wicks with atomic layer deposited silica. Appl Phys Lett 103:151602

    Article  Google Scholar 

  57. Lewis R, Liew LA, Xu S, Lee YC, Yang R (2015) Microfabricated ultra-thin all-polymer thermal ground planes. Sci Bull 60(7):701–706

    Article  Google Scholar 

  58. Oshman C, Li Q, Liew LA, Yang R, Bright V, Lee YC (2013) Flat flexible polymer heat pipes. J Micromech Microeng 23:015001, 7 pages

    Article  Google Scholar 

  59. Bar-Cohen A, Matin K, Jankowski N, Sharar D (2014) Two-phase thermal ground planes: technology development and parametric results. J Electron Packag 137(1):010801-010801-9. doi:10.1115/1.4028890

    Google Scholar 

  60. White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J, Aparicio S, Hansen CL (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A 108(34):13999–14004

    Article  Google Scholar 

  61. DelRio FW, Dunn ML, Phinney LM, Bourdon CJ, de Boer MP (2007) Rough surface adhesion in the presence of capillary condensation. Appl Phys Lett 90:163104

    Article  Google Scholar 

  62. Huang Y, Vasan ASS, Doraiswami R, Osterman M, Pecht M (2012) MEMS reliability review. IEEE Trans Device Mater Reliab 12(2):482–493. doi:10.1109/TDMR.2012.2191291

    Article  Google Scholar 

  63. MEMS Industry (2004) Report focus on reliability. MEMS Industry Group, Pittsburgh

    Google Scholar 

  64. Sontheimer A, Douglass M (1998) Identifying and eliminating digital light processing TM failure modes through accelerated stress testing. TI Tech J 128–136

    Google Scholar 

  65. Tanner DM (2000) Reliability of surface micromachined MicroElectroMechanical actuators. In: 22nd international conference microelectronics, Nis, Yugoslavia, pp 97–104

    Google Scholar 

  66. Yang HH, Zareie H, Rebeiz GM (2015) A high power stress-gradient resilient RF MEMS capacitive switch. J Microelectromech Syst 24(3):599–607. doi:10.1109/JMEMS.2014.2335173

    Article  Google Scholar 

  67. Coutu RA, Reid JR, Cortez R, Strawser RE, Kladitis PE (2006) Microswitches with sputtered Au, AuPd, Au-on-AuPt, and AuPtCu alloy electric contacts. IEEE Trans Compon Packag Technol 29:341–349

    Article  Google Scholar 

  68. de Boer MP, Knapp JA, Michalske TA, Srinivasan U, Maboudian R (2000) Adhesion hysteresis of silane coated microcantilevers. Acta Mater 48:4531–4541

    Article  Google Scholar 

  69. Sechrist ZA, Fabreguette FH, Heintz O, Phung TM, Johnson DC, George SM (2005) Optimization and structural characterization of W/Al2O3 nanolaminates grown using atomic layer deposition techniques. Chem Mater 17:3475–3485

    Article  Google Scholar 

  70. Cheng JH, Seghete D, Lee M, Schlager JB, Bertness KA, Sanford NA, Yang R, George SM, Lee YC (2011) Atomic layer deposition enabled interconnect technology for vertical nanowire arrays. Sensors Actuators A Phys 165:107–114

    Article  Google Scholar 

  71. Elam JW, George SM (2003) Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem Mater 15:1020

    Article  Google Scholar 

  72. Hoivik ND, Elam JW, Linderman RJ, Bright VM, George SM, Lee YC (2003) Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors Actuators A-103:100–108

    Article  Google Scholar 

  73. DelRio FW, Herrmann CF, Hoivik N, George SM, Bright VM, Ebel JL, Strawser RE, Cortez R, Leedy KD (2004) Atomic layer deposition of Al2O3/ZnO nano-scale films for gold RF MEMS. In: IEEE MTT-S international, pp 1923–1926

    Google Scholar 

  74. Herrmann CF, DelRio FW, Bright VM, George SM (2004) Hydrophobic coatings using atomic layer deposition and non-chlorinated precursors. In: 17th IEEE international conference on MEMS, pp 653–656

    Google Scholar 

  75. Herrmann CF, Fabreguette FH, Finch DS, Geiss R, George SM (2005) Multilayer and functional coatings on carbon nanotubes using atomic layer deposition. Appl Phys Lett 87:123110

    Article  Google Scholar 

  76. Du Y, George SM (2007) Molecular layer deposition of Nylon 66 films examined using in situ FTIR spectroscopy. J Phys Chem C 111:8509–8517

    Article  Google Scholar 

  77. Sharma K, Hall RA, George SM (2015) Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor. J Vac Sci Technol A 33:01A132. http://dx.doi.org/10.1116/1.4902086

  78. Yersak A, Lee YC, Spencer J, Groner M (2014) Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness. J Vac Sci Technol A 32:01A130

    Article  Google Scholar 

  79. Lau JH (2014) Overview and outlook of three-dimensional integrated circuit packaging, three-dimensional Si integration, and three-dimensional integrated circuit integration. J Electron Packag 136(4):040801. doi:10.1115/1.4028629

    Article  Google Scholar 

  80. Green C, Kottke P, Han X et al (2015) A review of two-phase forced cooling in three-dimensional stacked electronics: technology integration. J Electron Packag 137(4):040802-040802-9. doi:10.1115/1.4031481

    Article  Google Scholar 

  81. Wang Y, Li Z, Xiao J (2016) Stretchable thin film materials: fabrication, application, and mechanics. J Electron Packag 138(2):020801-020801-22. doi:10.1115/1.4032984

    Article  Google Scholar 

  82. Xie B, Hu R, Luo X (2016) Quantum dots-converted light-emitting diodes packaging for lighting and display: status and perspectives. J Electron Packag 138(2):020803-020803-13. doi:10.1115/1.4033143

    Article  Google Scholar 

  83. Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2003) Fabrication, assembly, and testing of RF MEMS capacitive switches using flexible printed circuit technology. IEEE Trans Adv Packag 26(3):248–254

    Google Scholar 

Download references

Acknowledgement

The first author is supported by the DARPA Micro Cryogenic Cooling (MCC) Program (W911NF-13-2-0029) and NSF Scalable Nano-manufacturing (SNM) project on Roll-to-Roll Atomic/Molecular Layer Deposition (CBET 1246854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, Y.C., Kong, M., Zhang, Y. (2017). Microelectromechanical Systems and Packaging. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics