Skip to main content

Optical Flow and Trajectory Methods in Context

  • Chapter
  • First Online:
Optical Flow and Trajectory Estimation Methods

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

Abstract

In this chapter we study the related fields of multi-frame optical flow and trajectories. Since the beginning of modern optical flow estimation methods, multiple frames have been used in an effort to improve the motion computation. We look at why most of these efforts have failed. More recently, researchers have stitched together sequences of optical flow fields to create trajectories. These trajectories are temporally coherent, a necessary property for virtually every real-world application of optical flow. New methods compute these trajectories directly using variational methods and low-rank constraints. We also identify the need for appropriate data sets and evaluation methods for this nascent field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MPI Sintel Flow Dataset. http://sintel.is.tue.mpg.de/ (2014)

  2. The KITTI Vision Benchmark Suite. http://www.cvlibs.net/datasets/kitti/index.php (2014)

  3. The Middlebury Computer Vision Pages. http://vision.middlebury.edu (2014)

  4. S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, R. Szeliski, A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  5. M. Black, Recursive non-linear estimation of discontinuous flow fields, in Computer Vision—ECCV’94, pp. 138–145 (1994)

    Google Scholar 

  6. M.J. Black, P. Anandan, Robust dynamic motion estimation over time, in Proceedings of Computer Vision and Pattern Recognition, CVPR-91, pp. 296–302 (1991)

    Google Scholar 

  7. M. Brand, Morphable 3D models from video, in Computer Vision and Pattern Recognition, pp. II–456–II–463, vol. 2 (2001)

    Google Scholar 

  8. T. Brox, J. Malik, Large Displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 500–513 (2011)

    Google Scholar 

  9. A. Bruhn, J. Weickert, C. Schnörr, Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  10. D.J. Butler, J. Wulff, G.B. Stanley, M.J. Black, A naturalistic open source movie for optical flow evaluation, in European Conference on Computer Vision (ECCV), pp. 611–625 (2012)

    Google Scholar 

  11. T.M. Chin, W.C. Karl, A.S. Willsky, Probabilistic and sequential computation of optical flow using temporal coherence. IEEE Trans. Image Process. (A Publication of the IEEE Signal Processing Society). 3(6):773–788 (1994)

    Google Scholar 

  12. T. Crivelli, P. Conze, P. Robert, P. Pérez, From optical flow to dense long term correspondences, in International Conference on Image Processing (ICIP), pp. 61–64 (2012)

    Google Scholar 

  13. M. Elad, A. Feuer, Recursive optical flow estimationadaptive filtering approach. J. Vis. Commun. Image Represent. 9(2), 119–138 (1998)

    Article  Google Scholar 

  14. R. Garg, L. Pizarro, D. Rueckert, L. Agapito, Dense multi-frame optic flow for non-rigid objects using subspace constraints. Comput. Vis. ACCV 2010, 460–473 (2011)

    Google Scholar 

  15. R. Garg, A. Roussos, L. Agapito, A variational approach to video registration with subspace constraints. Int. J. Comput. Vis. 104, 286–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, in Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  17. D. Heeger, Optical flow using spatiotemporal filters. Int. J. Comput. Vis. 279–302 (1988)

    Google Scholar 

  18. B. Horn, B. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  19. M. Irani, Multi-frame correspondence estimation using subspace constraints. Int. J. Comput. Vis. 48(153), 173–194 (2002)

    Article  MATH  Google Scholar 

  20. M. Lang, O. Wang, T. Aydin, Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. 31(34):31:4–31:8 (2012)

    Google Scholar 

  21. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  22. D. Murray, B.F. Buxton, Scene segmentation from visual motion using global optimization. Pattern Anal. Mach. Intell. IEEE Trans. PAMI. 9, 220–228 (1987)

    Google Scholar 

  23. H.H. Nagel, Extending the ‘oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow, in Proceedings of the First European Conference on Computer Vision. (Springer New York, Inc., 1990), pp. 139–148

    Google Scholar 

  24. T. Nir, A.M. Bruckstein, R. Kimmel, Over-parameterized variational optical flow. Int. J. Comput. Vis. 76(2), 205–216 (2007)

    Article  Google Scholar 

  25. S. Ricco, C. Tomasi, Dense lagrangian motion estimation with occlusions, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1800–1807 (2012)

    Google Scholar 

  26. S. Ricco, C. Tomasi, Simultaneous compaction and factorization of sparse image motion matrices. Comput. Vis. ECCV (2012)

    Google Scholar 

  27. S. Ricco, C. Tomasi, Video motion for every visible point, in International Conference on Computer Vision (ICCV), number i (2013)

    Google Scholar 

  28. S.M. Ricco, Video motion: finding complete motion paths for every visible point, in ProQuest Dissertations and Theses, p. 142 (2013)

    Google Scholar 

  29. M. Rubinstein, C. Liu, W. Freeman, Towards longer long-range motion trajectories, in Proceedings of the British Machine Vision Conference (2012)

    Google Scholar 

  30. A. Salgado, J. Sánchez, Temporal constraints in large optical flow estimation, in Computer Aided Systems Theory EUROCAST 2007, vol. 4739, Lecture Notes in Computer Science, ed. by R. Moreno-Díaz, F. Pichler, A. Quesada-Arencibia (Springer, Berlin, 2007), pp. 709–716

    Chapter  Google Scholar 

  31. P. Sand, S. Teller, Particle video: long-range motion estimation using point trajectories. Int. J. Comput. Vis. 80(1), 72–91 (2008)

    Article  Google Scholar 

  32. J. Shi, C. Tomasi, Good features to track, in IEEE Conference on Computer Vision and Pattern Recogniton 1994 (1994)

    Google Scholar 

  33. A. Singh, Incremental estimation of image-flow using a kalman filter, in Proceedings of the IEEE Workshop on Visual Motion, pp. 36–43 (1991)

    Google Scholar 

  34. D. Sun, S. Roth, M.J. Black, A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2013)

    Article  Google Scholar 

  35. N. Sundaram, T. Brox, K. Keutzer, Dense point trajectories by GPU-accelerated large displacement optical flow, in Computer Vision ECCV 2010 (Springer Berlin Heidelberg, 2010)

    Google Scholar 

  36. S. Volz, A. Bruhn, L. Valgaerts, H. Zimmer, Modeling temporal coherence for optical flow, in 2011 International Conference on Computer Vision (ICCV), pp. 1116–1123 (2011)

    Google Scholar 

  37. A. Wedel, T. Pock, C. Zach, H. Bischof, D. Cremers, An improved algorithm for TV-L 1 optical flow, in Statistical and Geometrical Approaches to Visual Motion Analysis, pp. 23–45 (Springer Berlin, Heidelberg, 2009)

    Google Scholar 

  38. J. Weickert, C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. pp. 245–255 (2001)

    Google Scholar 

  39. H. Zimmer, A. Bruhn, J. Weickert, Optic flow in harmony. Int. J. Comput. Vis. 93(3), 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Gibson .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Gibson, J., Marques, O. (2016). Optical Flow and Trajectory Methods in Context. In: Optical Flow and Trajectory Estimation Methods. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-44941-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44941-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44940-1

  • Online ISBN: 978-3-319-44941-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics