Skip to main content

Computing the Partition Function of a Polynomial on the Boolean Cube

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics

Abstract

For a polynomial \(f:\{ -1,1\}^{n}\longrightarrow \mathbb{C}\), we define the partition function as the average of e λf(x) over all points x ∈ {−1, 1}n, where \(\lambda \in \mathbb{C}\) is a parameter. We present a quasi-polynomial algorithm, which, given such f, λ and ε > 0 approximates the partition function within a relative error of ε in N O(lnn−lnε) time provided \(\vert \lambda \vert \leq (2L\sqrt{\deg f})^{-1}\), where L = L( f) is a parameter bounding the Lipschitz constant of f from above and N is the number of monomials in f. As a corollary, we obtain a quasi-polynomial algorithm, which, given such an f with coefficients ± 1 and such that every variable enters not more than 4 monomials, approximates the maximum of f on { − 1, 1}n within a factor of \(O\left (\delta ^{-1}\sqrt{\deg f}\right )\), provided the maximum is for some 0 < δ ≤ 1. If every variable enters not more than k monomials for some fixed k > 4, we are able to establish a similar result when δ ≥ (k − 1)∕k.

This research was partially supported by NSF Grant DMS 1361541.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Bandyopadhyay, D. Gamarnik, Counting without sampling: asymptotics of the log-partition function for certain statistical physics models. Random Struct. Algorithm 33(4), 452–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Barak, A. Moitra, R. O’Donnell, P. Raghavendra, O. Regev, D. Steurer, L. Trevisan, A. Vijayaraghavan, D. Witmer, J. Wright, Beating the random assignment on constraint satisfaction problems of bounded degree, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. LIPIcs. Leibniz International Proceedings in Informatics, vol. 40 (Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015), pp. 110–123

    Google Scholar 

  3. A. Barvinok, Computing the partition function for cliques in a graph. Theor. Comput. 11, Article 13, 339–355 (2015)

    Google Scholar 

  4. A. Barvinok, Computing the permanent of (some) complex matrices. Found. Comput. Math. 16(2), 329–342 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Barvinok, P. Soberón, Computing the partition function for graph homomorphisms. Combinatorica (2016). doi:10.1007/s00493-016-3357-2

    Article  Google Scholar 

  6. A. Barvinok, P. Soberón, Computing the partition function for graph homomorphisms with multiplicities. J. Comb. Theory Ser. A 137, 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Boros, P.L. Hammer, Pseudo-boolean optimization. Discret. Appl. Math. 123(1–3), 155–225 (2002). Workshop on Discrete Optimization (DO’99), Piscataway

    Google Scholar 

  8. R.L. Dobrushin, S.B. Shlosman, Completely analytical interactions: constructive description. J. Stat. Phys. 46(5–6), 983–1014 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Håstad, On bounded occurrence constraint satisfaction. Inf. Process. Lett. 74(1–2), 1–6 (2000)

    Article  MathSciNet  Google Scholar 

  10. J. Håstad, Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Håstad, Improved bounds for bounded occurrence constraint satisfaction, manuscript (2005). Available at https://www.nada.kth.se/~johanh/bounded2.pdf

    Google Scholar 

  12. J. Håstad, S. Venkatesh, On the advantage over a random assignment. Random Struct. Algorithm 25(2), 117–149 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Kahn, N. Linial, A. Samorodnitsky, Inclusion-exclusion: exact and approximate. Combinatorica 16(4), 465–477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Khot, A. Naor, Grothendieck-type inequalities in combinatorial optimization. Commun. Pure Appl. Math. 65(7), 992–1035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. T.D. Lee, C.N. Yang, Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. (2) 87, 410–419 (1952)

    Google Scholar 

  16. G. Regts, Zero-free regions of partition functions with applications to algorithms and graph limits. Combinatorica (2017). doi:10.1007/s00493-016-3506-7

    Google Scholar 

  17. D. Weitz, Counting independent sets up to the tree threshold, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, STOC’06 (ACM, New York, 2006), pp. 140–149

    Google Scholar 

  18. C.N. Yang, T.D. Lee, Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. (2) 87, 404–409 (1952)

    Google Scholar 

  19. D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic number. Theor. Comput. 3, 103–1283 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Johan Håstad for advice and references on optimizing a polynomial on the Boolean cube and to the anonymous referees for careful reading of the paper and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Barvinok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Barvinok, A. (2017). Computing the Partition Function of a Polynomial on the Boolean Cube. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_7

Download citation

Publish with us

Policies and ethics