Skip to main content

Elastography: Applications and Limitations of a New Technology

  • Chapter
  • First Online:
Advanced Thyroid and Parathyroid Ultrasound

Abstract

Thyroid nodules are extremely common, reported in up to a third of adults (Hegedus et al., Endocr Rev, 24(1):102–132, 2003). The majority of thyroid nodules are benign; however, 5–15 % are malignant (Tumbridge et al., Clin Endocrinol, 7:481–493, 1997). Neck ultrasound with Doppler is considered a first-line study in the evaluation of the thyroid gland and has shown to be accurate in estimating malignancy risk and for selection of which nodules require biopsy (Frates et al., Radiology, 237(3):794–800, 2005). Features associated with malignancy include microcalcifications, increased vascular flow, and irregular borders; however, no one feature or combination has been shown to reliably identify malignant nodules (Haugen et al., Thyroid, 26(1):1–133, 2016). To further assess the risk of malignancy, nodules are typically subjected to fine-needle aspiration biopsy (FNAB). FNAB has excellent sensitivity and specificity, but has inherent limitations as 15–30 % of nodules are categorized as indeterminate (Dhyani et al., Am J Roentgenol, 201(6):1335–1339, 2013). Traditionally, the majority of patients with indeterminate cytology are referred for diagnostic thyroid lobectomy.

Ultrasound (US)-based elastography is a technique that evaluates the firmness or stiffness of tissues (Russ et al., Eur J Endocrinol, 168(5):649–655, 2013). On physical exam, a hard or firm growth or nodule is typically associated with malignancy. Elastography has been used in other organs, such as the breast and prostate, to estimate malignancy risk, and US-based elastography for the evaluation of thyroid nodules has been introduced and studied as a complimentary test to the limitations of conventional ultrasound and FNAB (Shuzhen, Eur J Radiol, 81(8):1806–1811, 2012). The purpose of this chapter is to review the ultrasound elastography techniques currently available for thyroid nodule evaluation and discuss the limitations of this relatively new technology in characterizing thyroid nodules and estimating the risk of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hegedus L, Bonnema SJ, Bennedbæk FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.

    Article  PubMed  Google Scholar 

  2. Tumbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whick-ham survey. Clin Endocrinol (Oxf). 1997;7:481–93.

    Article  Google Scholar 

  3. Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement 1. Radiology. 2005;237(3):794–800.

    Article  PubMed  Google Scholar 

  4. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dhyani M, Faquin W, Lubitz CC, Daniels GH, Samir AE. How to interpret thyroid fine-needle aspiration biopsy reports: a guide for the busy radiologist in the era of the Bethesda classification system. Am J Roentgenol. 2013;201(6):1335–9.

    Article  Google Scholar 

  6. Russ G, Royer B, Bigorgne C, Rouxel A, Bienvenu-Perrard M, Leenhardt L. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol. 2013;168(5):649–55.

    Article  CAS  PubMed  Google Scholar 

  7. Shuzhen C. Comparison analysis between conventional ultrasonography and ultrasound elastography of thyroid nodules. Eur J Radiol. 2012;81(8):1806–11.

    Article  PubMed  Google Scholar 

  8. Reiners C, Wegscheider K, Schicha H, et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid. 2004;14(11):926–32.

    Article  PubMed  Google Scholar 

  9. Iannuccilli JD, Cronan JJ, Monchik JM. Risk for malignancy of thyroid nodules as assessed by sonographic criteria: the need for biopsy. J Ultrasound Med. 2004;23(11):1455–64.

    Article  PubMed  Google Scholar 

  10. Friedrich-Rust M, Meyer G, Dauth N, et al. Interobserver agreement of Thyroid Imaging Reporting and Data System (TIRADS) and strain elastography for the assessment of thyroid nodules. PLoS One. 2013;8(10):e77927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asteria C, Giovanardi A, Pizzocaro A, et al. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523–31.

    Article  PubMed  Google Scholar 

  12. Faquin WC. Can a gene‐expression classifier with high negative predictive value solve the indeterminate thyroid fine‐needle aspiration dilemma? Cancer Cytopathol. 2013;121(3):116–9.

    Article  CAS  PubMed  Google Scholar 

  13. Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  14. Samir AE, Dhyani M, Anvari A, et al. Shear-wave elastography for the preoperative risk stratification of follicular-patterned lesions of the thyroid: diagnostic accuracy and optimal measurement plane. Radiology. 2015;277:565.

    Article  PubMed  Google Scholar 

  15. Kwak JY, Kim EK. Ultrasound elastography for thyroid nodules: recent advances. Ultrasonography. 2014;33(2):75–82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  17. Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography – an emerging branch of medical imaging. Current Med Imaging Rev. 2011;7(4):255.

    Article  Google Scholar 

  18. Aguilo MA, Aquino W, Brigham JC, Fatemi M. An inverse problem approach for elasticity imaging through vibroacoustics. IEEE Trans Med Imaging. 2010;29(4):1012–21.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis 1. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  20. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.

    Article  CAS  PubMed  Google Scholar 

  21. Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34(9):1373–86.

    Article  PubMed  Google Scholar 

  22. Zhang YF, Xu HX, He Y, et al. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. PLoS One. 2012;7:e49094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y-F, He Y, Xu H-X, et al. Virtual touch tissue imaging on acoustic radiation force impulse elastography a new technique for differential diagnosis between benign and malignant thyroid nodules. J Ultrasound Med. 2014;33(4):585–95.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y-F, Liu C, Xu H-X, et al. Acoustic radiation force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma. Biomed Res Int. 2014;2014:416969.

    PubMed  PubMed Central  Google Scholar 

  25. Bojunga J, Dauth N, Berner C, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu J-M, Xu H-X, Xu X-H, et al. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography. Ultrasound Med Biol. 2014;40(9):2020–30.

    Article  PubMed  Google Scholar 

  27. Xu J-M, Xu X-H, Xu H-X, et al. Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology. 2014;272(2):577–86.

    Article  PubMed  Google Scholar 

  28. Liu B-J, Xu H-X, Zhang Y-F, et al. Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto’s thyroiditis. Med Oncol. 2015;32(3):1–9.

    Article  CAS  Google Scholar 

  29. Zhang F-J, Han R-L, Zhao X-M. The value of virtual touch tissue image (VTI) and virtual touch tissue quantification (VTQ) in the differential diagnosis of thyroid nodules. Eur J Radiol. 2014;83(11):2033–40.

    Article  PubMed  Google Scholar 

  30. Bojunga J, Herrmann G, Meyer S, et al. Real-time elastography for the differentiation of benign and malignant nodules: a meta-analysis. Thyroid. 2010;20(10):1145–50.

    Article  PubMed  Google Scholar 

  31. Razavi SA, Hadduck TA, Sadigh G, et al. Comparative effectiveness of elastographic and b-mode ultrasound criteria for diagnostic discrimination of thyroid nodules: a meta-analysis. Am J Roentgenol. 2013;200(6):1317–26.

    Article  Google Scholar 

  32. Moon HJ, Sung JM, Kim EK. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 2012;262(3):1002–13.

    Article  PubMed  Google Scholar 

  33. Lin P, Chen M, Liu B, Wang S, Li X. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol. 2014;24(11):2729–38.

    Article  PubMed  Google Scholar 

  34. Zhang B, Ma X, Wu N, et al. Shear wave elastography for differentiation of benign and malignant thyroid nodules a meta-analysis. J Ultrasound Med. 2013;32(12):2163–9.

    Article  PubMed  Google Scholar 

  35. Rago T, Scutari M, Santini F, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.

    Article  CAS  PubMed  Google Scholar 

  36. Garino F, Deandrea M, Motta M, et al. Diagnostic performance of elastography in cytologically indeterminate thyroid nodules. Endocrine. 2014;49(1):175–83.

    Article  PubMed  CAS  Google Scholar 

  37. Lippolis P, Tognini S, Materazzi G, et al. Is elastography actually useful in the presurgical selection of thyroid nodules with indeterminate cytology? J Clin Endocrinol Metab. 2011;96(11):E1826–30.

    Article  CAS  PubMed  Google Scholar 

  38. Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397–406.

    Article  PubMed  Google Scholar 

  39. Magri F, Chytiris S, Capelli V, et al. Shear wave elastography in the diagnosis of thyroid nodules: feasibility in the case of coexistent chronic autoimmune Hashimoto’s thyroiditis. Clin Endocrinol (Oxf). 2012;76(1):137–41.

    Article  Google Scholar 

  40. Szczepanek-Parulska E, Woliński K, Stangierski A, Gurgul E, Ruchała M. Biochemical and ultrasonographic parameters influencing thyroid nodules elasticity. Endocrine. 2014;47(2):519–27.

    Article  CAS  PubMed  Google Scholar 

  41. Gietka-Czernel M, Kochman M, Bujalska K, Stachlewska-Nasfeter E, Zgliczyński W. Real-time ultrasound elastography-a new tool for diagnosing thyroid nodules. Endokrynol Pol. 2010;61(6):652–7.

    PubMed  Google Scholar 

  42. Ruchała M, Szmyt K, Sławek S, Zybek A, Szczepanek-Parulska E. Ultrasound sonoelastography in the evaluation of thyroiditis and autoimmune thyroid disease. Endokrynol Pol. 2014;65(6):520–31.

    Article  PubMed  Google Scholar 

  43. Nishihara E, Hirokawa M, Ohye H, et al. Papillary carcinoma obscured by complication with subacute thyroiditis: sequential ultrasonographic and histopathological findings in five cases. Thyroid. 2008;18(11):1221–5.

    Article  PubMed  Google Scholar 

  44. Bhatia K, Rasalkar D, Lee Y, et al. Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol. 2011;66(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  45. Vorländer C, Wolff J, Saalabian S, Lienenlüke RH, Wahl RA. Real-time ultrasound elastography—a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395(7):865–71.

    Article  PubMed  Google Scholar 

  46. Andrioli M, Persani L. Elastographic techniques of thyroid gland: current status. Endocrine. 2014;46(3):455–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia E. Stephen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dhyani, M., Li, C., Samir, A.E., Stephen, A.E. (2017). Elastography: Applications and Limitations of a New Technology. In: Milas, M., Mandel, S.J., Langer, J.E. (eds) Advanced Thyroid and Parathyroid Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-319-44100-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44100-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44098-9

  • Online ISBN: 978-3-319-44100-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics