Skip to main content

Chemical Reaction Network Designs for Asynchronous Logic Circuits

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9818))

Included in the following conference series:

Abstract

Chemical reaction networks (CRNs) are a versatile language for describing the dynamical behaviour of chemical kinetics, capable of modelling a variety of digital and analogue processes. While CRN designs for synchronous sequential logic circuits have been proposed and their implementation in DNA demonstrated, a physical realisation of these devices is difficult because of their reliance on a clock. Asynchronous sequential logic, on the other hand, does not require a clock, and instead relies on handshaking protocols to ensure the temporal ordering of different phases of the computation. This paper provides novel CRN designs for the construction of asynchronous logic, arithmetic and control flow elements based on a bi-molecular reaction motif with uniform reaction rates. We model and validate the designs using Microsoft’s GEC tool.

This research is supported by a Royal Society Research Professorship and ERC AdG VERIWARE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lepton.research.microsoft.com/webgec/.

  2. 2.

    Available from https://github.com/max1s/CRNcode.

References

  1. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

    Article  MATH  Google Scholar 

  2. Bortolussi, L., Cardelli, L., Kwiatkowska, M., Laurenti, L.: Approximation of probabilistic reachability for chemical reaction networks using the linear noise approximation. In: Proceedings of 13th International Conference on Quantitative Evaluation of SysTems (QEST 2016). LNCS. Springer (2016) (to appear)

    Google Scholar 

  3. Cardelli, L.: Two-domain DNA strand displacement. Dev. Comput. Models 26, 47–61 (2010)

    MATH  Google Scholar 

  4. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  5. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2, 1–37 (2012)

    Article  Google Scholar 

  6. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H.-L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science, pp. 313–326. ACM (2014)

    Google Scholar 

  9. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  10. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: Dna walker circuits: computational potential, design and verification. Nat. Comput. 14(2), 195–211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Silva, A.P., McClenaghan, N.D.: Molecular-scale logic gates. Chem.-A Eur. J. 10(3), 574–586 (2004)

    Article  Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines. Proc. Nat. Acad. Sci. 89(1), 383–387 (1992)

    Article  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for dna strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  17. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78, 1190–1193 (1997)

    Article  Google Scholar 

  18. Manohar, R., Martin, A.J.: Quasi-delay-insensitive circuits are Turing-complete. Technical report, DTIC Document (1995)

    Google Scholar 

  19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)

    Google Scholar 

  20. Nguyen, N.-P., Myers, C., Kuwahara, H., Winstead, C., Keener, J.: Design and analysis of a robust genetic Muller C-element. J. Theoret. Biol. 264(2), 174–187 (2010)

    Article  Google Scholar 

  21. Nguyen, N.-P.D., Kuwahara, H., Myers, C.J., Keener, J.P.: The design of a genetic Muller C-element. In: 13th IEEE International Symposium on Asynchronous Circuits and Systems, ASYNC 2007, pp. 95–104. IEEE (2007)

    Google Scholar 

  22. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6(Suppl 4), S419–S436 (2009)

    Article  Google Scholar 

  23. Senum, P., Riedel, M.: Rate-independent constructs for chemical computation. PloS One 6(6), e21414 (2011)

    Article  Google Scholar 

  24. Shin, S.W.: Compiling and verifying DNA-based chemical reaction network implementations. Ph.D. thesis, California Institute of Technolog (2011)

    Google Scholar 

  25. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  27. Spars, J., Furber, S.: Principles Asynchronous Circuit Design. Springer, New York (2002)

    Google Scholar 

  28. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Whitby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardelli, L., Kwiatkowska, M., Whitby, M. (2016). Chemical Reaction Network Designs for Asynchronous Logic Circuits. In: Rondelez, Y., Woods, D. (eds) DNA Computing and Molecular Programming. DNA 2016. Lecture Notes in Computer Science(), vol 9818. Springer, Cham. https://doi.org/10.1007/978-3-319-43994-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43994-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43993-8

  • Online ISBN: 978-3-319-43994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics