Skip to main content

Knowledge Creation and Research Policy in Science-Based Industries: An Empirical Agent-Based Model

  • Chapter
  • First Online:
Innovation Networks for Regional Development

Part of the book series: Economic Complexity and Evolution ((ECAE))

Abstract

There is an increasing demand for ex-ante impact assessment of policy measures in the field of research. Existing methods to explore the effects of policy interventions in innovation systems often lack transparency or just extrapolate current trends, neglecting real-world complexities. Therefore, we propose a simulation approach and develop an empirical agent-based model (ABM) of knowledge creation in a localized system of researching firms in a science-based industry. With its strong emphasis on empirical calibration, the model represents the Austrian biotechnology industry. In our simulations, effects of different public research policies on the knowledge output—measured by the patent portfolio—are under scrutiny. By this, the study contributes to the development of ABMs in two main aspects: (1) Building on an existing concept of knowledge representation, we advance the model of individual and collective knowledge creation in firms by conceptualizing policy intervention and corresponding output indicators. (2) We go beyond symbolic ABMs of knowledge creation by using patent data as knowledge representations, adopting an elaborate empirical initialisation and calibration strategy using company data. We utilise econometric techniques to generate an industry-specific fitness function that determines the model output. The model allows for analysing the effect of different public research funding schemes on the technology profile of the Austrian biotechnology innovation system. The results demonstrate that an empirically calibrated and transparent model design increases credibility and robustness of the ABM approach in the context of ex-ante impact assessment of public research policy in an industry-specific and national context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the acronym ABM to refer to both “agent-based-modelling” and “agent-based model”.

  2. 2.

    Note: \( {\overline{T}}_{jm} \) is chosen from the set of technology classes T based on an empirical similarity measure given by the Jaccard index of technology classes (see Sect. 4.1).

  3. 3.

    Strictly speaking, the notion of spillover is not a deliberate actor strategy since it describes a phenomenon that occurs unintentionally within a population. Nevertheless, in the model the process can be formally conceptualised in the same procedure as the two other research strategies (see also Sect. 3.2).

  4. 4.

    Note that the identical number of total technology classes and agents (i.e. 61) is not intentional but stems from the empirical initialisation of the model.

  5. 5.

    The empirical values of J lm used in the current application (61-by-61 matrix) can be obtained from the authors.

  6. 6.

    http://cs.gmu.edu/~eclab/projects/mason/

References

  • Aiginger K, Falk R, Reinstaller A (2009) Reaching out to the future needs radical change—towards a new policy for innovation, science and technology in Austria. In: Evaluation of Government Funding in RTDI from a Systems Perspective in Austria (ed) Synthesis report, WIFO, Wien

    Google Scholar 

  • Antonelli C (2011) The economic complexity of technological change: interactions, knowledge and path dependence. In: Antonelli C (ed) Handbook on the economic complexity of technological change. Edward Elgar, Cheltenham, UK

    Chapter  Google Scholar 

  • Arthur WB (2007) The structure of invention. Res Pol 36(2):274–287

    Article  Google Scholar 

  • Astor M, Heinrich S, Klose G, Riesenberg D (2009) Interventionslogik und Markt-/Systemversagen sowie Zusammenspiel der Institutionen und Akteure. In: Systemevaluierung der österreichischen Forschungsförderung und -finanzierung (ed) Teilbericht 9, Prognos AG, Berlin

    Google Scholar 

  • Autio E, Kanninen S, Gustafsson R (2008) First- and second-order additionality and learning outcomes in collaborative R&D programs. Res Pol 37:59–76

    Article  Google Scholar 

  • Axelrod R, Tesfatsion L (2006) A guide for newcomers to agent-based modelling in the social sciences. In: Judd KL, Tesfatsion L (eds) Handbook of computational economics, Vol. 2: Agent-based computational economics. North-Holland, Amsterdam

    Google Scholar 

  • Barfield C, Calfee JE (2007) Biotechnology and the patent system. Balancing innovation and property rights. AEI, Washington, DC

    Google Scholar 

  • Basberg BL (1987) Patents and the measurement of technological change: a survey of the literature. Res Pol 16:131–141

    Article  Google Scholar 

  • Baum JAC, Ingram P (2002) Interorganizational learning and network organizations: toward a behavioral theory of the ‘interfirm’. In: Augier M, March JG (eds) The economics of choice, change, and organization. Essays in the memory of Richard M. Cyert. Edward Elgar, Cheltenham, UK

    Google Scholar 

  • Breitfeller D, Scherngell T, Paier M (2014) The evolution of the biotechnology sector in Austria: evidence using patents over the time period 1990-2010. SSRN Working Paper Series No. 2512257, Rochester, NY

    Google Scholar 

  • Breschi S, Catalini C (2010) Tracing the links between science and technology: an exploratory analysis of scientists’ and inventors’ networks. Res Pol 39(1):14–26

    Article  Google Scholar 

  • Burton ML, Hicks MJ (2006) Do university based biotechnology centres impact regional biotechnology related (commercial) employment? Int J Technol Tran Commercialisation 5(4):390–400

    Article  Google Scholar 

  • Cameron AC, Trivedi PK (2012) Regression analysis of count data. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cerulli G (2015) Econometric evaluation of socio-economic programs: theory and applications. Springer, Heidelberg

    Book  Google Scholar 

  • Christensen TA, Frosch H, Boysen-Jensen D (2014) Central innovation manual on excellent econometric evaluation of the impact of public R&D investments (CIM 2.0). Danish Ministry of Science, Innovation and Higher Education, and Danish Agency of Science, Technology and Innovation, Copenhagen

    Google Scholar 

  • Cockburn IM (2004) The changing structure of the pharmaceutical industry. Health Aff 23(1):10–22

    Article  Google Scholar 

  • Cunningham P, Gök A (2015) The impact of innovation policy schemes for collaboration. In: Edler J, Cunningham P, Gök A, Shapira P (eds) Handbook of innovation policy impact. Edward Elgar, London

    Google Scholar 

  • Dawid H (2006) Agent-based models of innovation and technological change. In: Judd KL, Tesfatsion L (eds) Handbook of computational economics, Volume 2: Agent-based computational economics. North-Holland, Amsterdam

    Google Scholar 

  • Delanghe H, Muldur U (2007) Ex-ante impact assessment of research programmes: the experience of the European Union’s 7th Framework Programme. Sci Publ Pol 34(3):169–183

    Article  Google Scholar 

  • European Commission (2009) Impact assessment guidelines. PART III: Annexes to SEC(2009) 92. SEC(2009) 92, European Commission, Brussels

    Google Scholar 

  • European Commission (2013) The 2013 EU industrial R&D investment scoreboard. In: Industrial research monitoring and analysis (IRMA). European Commission – Joint Research Centre, Institute for Prospective Technological Studies, Seville, Spain

    Google Scholar 

  • Fischer MM, Fröhlich J (2001) Knowledge, complexity and innovation systems: prologue. In: Fischer MM, Fröhlich J (eds) Knowledge, complexity and innovation systems. Springer, Berlin

    Chapter  Google Scholar 

  • Freeman C (1987) Technology and economic performance: lessons from Japan. Pinter, London

    Google Scholar 

  • Genet C, Errabi K, Gauthier C (2012) Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 32(3–4):205–215

    Article  Google Scholar 

  • Giesecke S (2000) The contrasting roles of government in the development of biotechnology industry in the US and Germany. Res Pol 29(2):205–223

    Article  Google Scholar 

  • Gilbert N (1997) A simulation of the structure of academic science. Sociol Res Online 2(2). http://www.socresonline.org.uk/socresonline/2/2/3.html

  • Gilbert N, Pyka A, Ahrweiler P (2001) Innovation networks—a simulation approach. J Artif Soc Soc Simulat 4(3):8

    Google Scholar 

  • Gittelman M (2006) National institutions, public–private knowledge flows, and innovation performance: a comparative study of the biotechnology industry in the US and France. Res Pol 35(7):1052–1068

    Article  Google Scholar 

  • Griliches Z (1990) Patent statistics as economic indicators: a survey. J Econ Lit 28(4):1661–1707

    Google Scholar 

  • Griliches Z, Mairesse J (1983) Comparing productivity growth: an exploration of French and U.S. industrial and firm data. Eur Econ Rev 21(1–2):89–119

    Article  Google Scholar 

  • Guellec D, van Pottelsberghe de la Potterie B (2003) The impact of public R&D expenditure on business R&D. Econ Innovat New Technol 12(3):225–243

    Article  Google Scholar 

  • Gulas C, Dorfmayr R, Luptacik P, Streibl W, Schneider HW, Katzmair H (2014) Wertschöpfungsökologie der Biotech in Österreich. Stärken, Schwächen und Chancen. In: Thesenpapier. Studie im Auftrag des Rat für Forschung und Technologieentwicklung. IWI; FAS Research, Wien

    Google Scholar 

  • Hall LA, Bagchi-Sen S (2007) An analysis of firm-level innovation strategies in the US biotechnology industry. Technovation 27:4–14

    Article  Google Scholar 

  • Hoekman J, Frenken K, van Oort F (2009) The geography of collaborative knowledge production in Europe. Ann Reg Sci 43(3):721–738(18)

    Article  Google Scholar 

  • Hopkins MM, Martin PA, Nightingale P, Kraft A, Mahdi S (2007) The myth of the biotech revolution: an assessment of technological, clinical and organisational change. Res Pol 36:566–589

    Article  Google Scholar 

  • Kancs dA, Siliverstovs B (2016) R&D and non-linear productivity growth. Res Pol 45(3):634–646

    Google Scholar 

  • Katz JS (2006) Indicators for complex innovation systems. Res Pol 35:893–909

    Article  Google Scholar 

  • Khoury TA, Pleggenkuhle-Miles EG (2011) Shared inventions and the evolution of capabilities: examining the biotechnology industry. Res Pol 40(7):943–956

    Article  Google Scholar 

  • Klette TJ, Møen J, Griliches Z (2000) Do subsidies to commercial R&D reduce market failures? Microeconometric evaluation studies. Res Pol 29(4–5):471–495

    Article  Google Scholar 

  • Koput KW, Smith-Doerr L, Powell WW (1997) Strategies of learning and industry structure: the evolution of networks in biotechnology. Adv Strat Manag 14:229–254

    Google Scholar 

  • Korber M, Paier M (2014) Simulating the effects of public funding on research in life sciences: direct research funds vs. tax incentives. In: Gilbert N, Ahrweiler P, Pyka A (eds) Simulating the knowledge dynamics of innovation networks. Springer, Berlin

    Google Scholar 

  • Krafft J, Quatraro F (2011) The dynamics of technological knowledge: from linearity to recombination. In: Antonelli C (ed) Handbook on the economic complexity of technological change. Edward Elgar, Cheltenham, UK

    Google Scholar 

  • Linton K, Stone P, Wise J (2008) Patenting trends and innovation in industrial biotechnology. In: Staff Research Study 31. U.S. International Trade Commission, Office of Industries, Washington, DC

    Google Scholar 

  • Long JS, Freese J (2001) Regression models for categorical dependent variables using STATA. Stata, College Station, TX

    Google Scholar 

  • Lundvall B-Å, Borrás S (2004) Science, technology and innovation policy. In: Fagerberg J, Mowery DC, Nelson RR (eds) The Oxford handbook of innovation. Oxford University Press, Oxford

    Google Scholar 

  • Magerman T, Van Looy B, Debackere K (2015) Does involvement in patenting jeopardize one’s academic footprint? An analysis of patent-paper pairs in biotechnology. Res Pol 44(9):1702–1713

    Article  Google Scholar 

  • McKelvey M, Alm H, Riccaboni M (2003) Does co-location matter for formal knowledge collaboration in the Swedish biotechnology–pharmaceutical sector? Res Pol 32(3):483–501

    Article  Google Scholar 

  • McMillan GS, Narin F, Deeds DL (2000) An analysis of the critical role of public science in innovation: the case of biotechnology. Res Pol 29:1–8

    Article  Google Scholar 

  • Mohnen P, Lokshin B (2009) What does it take for an R&D tax incentive policy to be effective? CIRANO Scientific Series, Montreal. http://d.repec.org/n?u=RePEc:cir:cirwor:2009s-11&r=ino

  • Nelson RR (1993) National innovation systems: a comparative study. Oxford University Press, New York

    Google Scholar 

  • Nelson AJ (2009) Measuring knowledge spillovers: what patents, licenses and publications reveal about innovation diffusion. Res Pol 38(6):994–1005

    Article  Google Scholar 

  • Niosi J (2000) Science-based industries: a new Schumpeterian taxonomy. Technol Soc 22(4):429–444

    Article  Google Scholar 

  • OECD (2008) OECD patent databases: identifying technology areas for patents. OECD, Paris. http://www.oecd.org/sti/inno/40807441.pdf

  • OECD (2009) The bioeconomy to 2030: designing a policy agenda. Main findings and policy conclusions. OECD International Futures Project, OECD, Paris

    Google Scholar 

  • OECD (2015) Statistical definition of biotechnology. http://www.oecd.org/sti/biotech/statisticaldefinitionofbiotechnology.htm. Last accessed 22 Jan 2016

  • Orbis (2014) ORBIS company database. Bureau van Dijk

    Google Scholar 

  • Owen-Smith J, Powell WW (2004) Knowledge networks as channels and conduits: the effects of spillovers in the Boston Biotechnology Community. Organ Sci 15(1):5–21

    Article  Google Scholar 

  • Powell WW, Snellman K (2004) The knowledge economy. Annu Rev Sociol 30:199–220

    Article  Google Scholar 

  • Powell WW, Koput KW, Smith-Doerr L (1996) Interorganizational collaboration and the locus of innovation: networks of learning in biotechnology. Admin Sci Q 41:116–145

    Article  Google Scholar 

  • Reiner C, Smoliner S (2012) Outputorientierte Evaluierung öffentlich geförderter FTI-Programme—Möglichkeiten und Grenzen. In: Studie im Auftrag des Bundesministeriums für Verkehr, Innovation und Technologie. Gesellschaft zur Förderung der Forschung (GFF), Joanneum Research (JR) und Zentrum für Soziale Innovation (ZSI), Wien

    Google Scholar 

  • Reinold F, Paier M, Fischer MM (2013) Joint knowledge production in European R&D networks: results from a discrete choice modeling perspective. In: Scherngell T (ed) The geography of networks and R&D collaborations. Springer, Berlin

    Google Scholar 

  • Rip A, Courtial P (1984) Co-word maps of biotechnology: an example of cognitive scientometrics. Scientometrics 6:381–400

    Article  Google Scholar 

  • Romer PM (1990) Endogenous technological change. J Polit Econ 98, Part 1(5):S71–S102

    Article  Google Scholar 

  • Roper S, Hewitt-Dundas N (2015) Knowledge stocks, knowledge flows and innovation: evidence from matched patents and innovation panel data. Res Pol 44(7):1327–1340

    Article  Google Scholar 

  • Santos FM (2003) The coevolution of firms and their knowledge environment: insights from the pharmaceutical industry. Technol Forecast Soc Change 70(7):687–715

    Article  Google Scholar 

  • Saviotti PP, Catherine D (2008) Innovation networks in biotechnology. In: Patzelt H, Brenner T (eds) Handbook of bioentrepreneurship. Springer, New York

    Google Scholar 

  • Schibany A, Berger M, Buchinger E, Dachs B, Dinges M, Ecker B, Falk M, Gassler H, Heller-Schuh B, Hofer R, Huber P, Janger J, Reinstaller A, Streicher G, Unterlass F (2010) Österreichischer Forschungs- und Technologiebericht 2010. In: Lagebericht gem. § 8 (1) FOG über die aus Bundesmitteln geförderte Forschung, Technologie und Innovation in Österreich. BMWF, BMVIT, BMWFJ, Wien

    Google Scholar 

  • Shapiro C (2001) Navigating the patent thicket: cross licenses, patent pools, and standard-setting. In: Jaffe AB, Lerner J, Stern S (eds) Innovation policy and the economy. National Bureau of Economic Research, Cambridge, MA

    Google Scholar 

  • Siebers PO, Macal CM, Garnett J, Buxton D, Pidd M (2010) Discrete-event simulation is dead, long live agent-based simulation! J Simulat 4(3):204–210

    Article  Google Scholar 

  • Smajgl A, Barreteau O (2014) Designing empirical agent-based models: an issue of matching data, technical requirements and stakeholders expectations. In: Smajgl A, Barreteau O (eds) Empirical agent-based modelling—challenges and solutions. Volume 1: The characterisation and parameterisation of empirical agent-based models. Springer, New York

    Chapter  Google Scholar 

  • Stuart TE, Ozdemir SZ, Ding WW (2007) Vertical alliance networks: the case of university-biotechnology-pharmaceutical alliance chains. Res Pol 36:477–498

    Article  Google Scholar 

  • Thiele JC, Kurth W, Grimm V (2014) Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using NetLogo and ‘R’. J Artif Soc Soc Simulat 17(3):11

    Google Scholar 

  • Tödtling F, Trippl M (2007) Knowledge links in high-technology industries: markets, networks, or milieu? The case of the Vienna Biotechnology Cluster. Int J Entrepren Innovat Manag 7(2–5):345–365

    Google Scholar 

  • Trippl M, von Gabain J, Tödtling F (2006) Policy agents as catalysts of knowledge links in the biotechnology sector. SRE-Discussion 2006/01, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business

    Google Scholar 

  • Triulzi G, Pyka A, Scholz R (2014) R&D and knowledge dynamics in university-industry relationships in biotech and pharmaceuticals: an agent-based model. Int J Biotechnol 13(1–3):137–179

    Article  Google Scholar 

  • Verhoeven D, Bakker J, Veugelers R (2016) Measuring technological novelty with patent-based indicators. Res Pol 45(3):707–723

    Article  Google Scholar 

  • Wajsman N, Thumm N, Kazimierczak M, Lazaridis G, Arias Burgos C, Domanico F, García Valero F, Boedt G, Garanasvili A, Mihailescu A (2013) Intellectual property rights intensive industries: contribution to economic performance and employment in the European Union. In: Industry-level analysis report. European Patent Office and Office for Harmonization in the Internal Market, Munich, Germany, and Alicante, Spain

    Google Scholar 

  • Wieczorek AJ, Hekkert MP (2012) Systemic instruments for systemic innovation problems: a framework for policy makers and innovation scholars. Sci Publ Pol 39:74–87

    Article  Google Scholar 

  • Wirth M (2013) Der Campus Vienna Biocenter. Entstehung, Entwicklung und Bedeutung für den Life Sciences-Standort Wien. Studienverlag, Innsbruck

    Google Scholar 

  • Zhang J, Baden-Fuller C, Mangematin V (2007) Technological knowledge base, R&D organization structure and alliance formation: evidence from the biopharmaceutical industry. Res Pol 36:515–528

    Article  Google Scholar 

  • Zucker L, Darby M, Brewer MB (1998) Intellectual human capital and the birth of U.S. biotechnology enterprises. Am Econ Rev 88(1):290–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Paier .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5 Definition of technology classes (International Patent Classification, IPC)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paier, M., Dünser, M., Scherngell, T., Martin, S. (2017). Knowledge Creation and Research Policy in Science-Based Industries: An Empirical Agent-Based Model. In: Vermeulen, B., Paier, M. (eds) Innovation Networks for Regional Development. Economic Complexity and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-43940-2_7

Download citation

Publish with us

Policies and ethics