Skip to main content

Abstract

Various interesting processes are taking place at solid–liquid interfaces, i.e., electrode–electrolyte interfaces, and therefore the electronic and geometric structures play crucial roles in those interfacial processes. X-ray absorption fine structure (XAFS) allows us to clarify not only the interfacial static structures but also the dynamic structural changes in situ and in real time, because x-rays can penetrate through the liquid phase without significant loss in intensity. In this chapter, applications of in situ XAFS to various electrode–electrolyte interfaces are briefly overviewed from the viewpoint of fundamental electrochemistry and several examples of in situ XAFS studies on electrocatalytic reactions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uosaki K (2015) In situ real-time monitoring of geometric, electronic, and molecular structures at solid/liquid interfaces. Jpn J Appl Phys 54:030102/1–030102/14

    Article  CAS  Google Scholar 

  2. Jerkiewicz G, Soriaga MP, Uosaki K, Wieckowski A (1997) Solid-liquid electrochemical interfaces. American Chemical Society, Washington

    Book  Google Scholar 

  3. Abruña HD (ed) (1991) Electrochemical interfaces: modern techniques for in-situ interface characterization. Wiley, New York

    Google Scholar 

  4. Gewirth AA, Niece BK (1997) Electrochemical applications of in situ scanning probe microscopy. Chem Rev 97:1129–1162

    Article  CAS  Google Scholar 

  5. Szklarczyk M, Strawski M, Bienkowski K (2008) 25 Years of the scanning tunneling microscopy. Mod Aspects Electrochem 42:303–368

    CAS  Google Scholar 

  6. Toney MF, McBreen J (1993) In situ synchrotron X-ray techniques for determining atomic structure at electrode/electrolyte interfaces. Electrochem Soc Interface 2:22–31

    CAS  Google Scholar 

  7. Feidenhansl R (1989) Surface-structure determination by X-ray-diffraction. Surf Sci Rep 10:105–188

    Article  CAS  Google Scholar 

  8. Tadjeddine A, Peremans A (1998) Non-linear optical spectroscopy of the electrochemical interface. Adv Spectrosc 26:159–217

    CAS  Google Scholar 

  9. Shen YR (1989) Surface-properties probed by 2nd-harmonic and sum-frequency generation. Nature 337:519–525

    Article  CAS  Google Scholar 

  10. Melendres CA, Tadjeddine A (1994) Synchrotron techniques in interfacial electrochemistry. Springer, Dordrecht

    Book  Google Scholar 

  11. Albarelli MJ, White JH et al (1988) In situ surface EXAFS at chemically modified electrodes. J Electroanal Chem 248:77–86

    Article  CAS  Google Scholar 

  12. Gordon JG, Melroy OR et al (1986) Surface EXAFS of an electrochemical interface iodine on platinum (111). J Electroanal Chem 210:311–314

    Article  CAS  Google Scholar 

  13. Endo O, Kiguchi M (1999) In-situ X-ray absorption studies of bromine on the Ag(100) electrode. J Electroanal Chem 473:19–24

    Article  CAS  Google Scholar 

  14. McBreen J, O’Grady WE et al (1987) EXAFS study of the nickel-oxide electrode. Langmuir 3:428–433

    Article  CAS  Google Scholar 

  15. Kordesch ME, Hoffman RW (1984) Electrochemical-cells for in situ EXAFS. Nucl Instrum Methods Phys Res A 222:347–350

    Article  CAS  Google Scholar 

  16. Davenport AJ, Isaacs HS et al (1991) In situ X-ray absorption study of chromium valency changes in passive oxides on sputtered AlCr thin-films under electrochemical control. J Electrochem Soc 138:337–338

    Article  CAS  Google Scholar 

  17. Bardwell JA, Sproule GI et al (1992) In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J Electrochem Soc 139:371–373

    Article  CAS  Google Scholar 

  18. Pandya KI, Hoffman RW et al (1990) In situ X-ray absorption spectroscopic studies of nickel-oxide electrodes. J Electrochem Soc 137:383–388

    Article  CAS  Google Scholar 

  19. Pandya KI, O'Grady WE et al (1990) Extended X-ray absorption fine structure investigations of nickel hydroxides. J Phys Chem 94:21–26

    Google Scholar 

  20. McBreen J, O’Grady WE et al (1989) In situ time-resolved X-ray absorption near edge structure study of the nickel-oxide electrode. J Phys Chem 93:6308–6311

    Article  CAS  Google Scholar 

  21. Guay D, Tourillon G et al (1991) In situ time-resolved EXAFS study of the structural modifications occurring in nickel-oxide electrodes between their fully oxidized and reduced states. J Electroanal Chem 305:83–95

    Article  CAS  Google Scholar 

  22. Blum L, Abruña HD et al (1986) Study of underpotentially deposited copper on gold by fluorescence detected surface EXAFS. J Chem Phys 85:6732–6738

    Article  CAS  Google Scholar 

  23. Tadjeddine A, Tourillon G, Guay D (1991) Structural and electronic characterization of underpotentially deposited copper on gold single-crystal probed by in situ X-ray absorption-spectroscopy. Electrochim Acta 36:1859–1862

    Article  CAS  Google Scholar 

  24. Tadjeddine A, Guay D et al (1991) Electronic and structural characterization of underpotentially deposited submonolayers and monolayer of copper on gold (111) studied by in situ X-ray-absorption spectroscopy. Phys Rev Lett 66:2235–2238

    Article  CAS  Google Scholar 

  25. Kondo T, Tamura K et al (1997) Coverage dependent structure of electrochemically deposited Cu on p-GaAs(100) in H2SO4 solution determined by in situ surface X-ray absorption fine structure spectra. Chem Lett 8:761–762

    Article  Google Scholar 

  26. Uosaki K, Kondo T et al (1997) Structural study of electrochemically deposited copper on p-GaAs(001) by atomic force microscopy and surface X-ray absorption fine structure measurement. Appl Surf Sci 121:102–106

    Article  Google Scholar 

  27. Tamura K, Oyanagi H et al (2000) Structural study of electrochemically deposited Cu on p-GaAs(100) in H2SO4 solution by in situ surface-sensitive X-ray absorption fine structure measurements. J Phys Chem B 104:9017–9024

    Article  CAS  Google Scholar 

  28. McBreen J, O’Grady WE, Pandya KI (1988) EXAFS – a new tool for the study of battery and fuel-cell materials. J Power Sources 22:323–340

    Article  CAS  Google Scholar 

  29. Tada M, Murata S et al (2007) In situ time-resolved dynamic surface events on the Pt/C cathode in a fuel cell under operando conditions. Angew Chem Int Ed 46:4310–4315

    Article  CAS  Google Scholar 

  30. Uemura Y, Inada Y et al (2011) In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Phys Chem Chem Phys 13:15833–15844

    Article  CAS  Google Scholar 

  31. Ishiguro N, Saida T et al (2012) Operando time-resolved X-ray absorption fine structure study for surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell during voltage-operating processes. ACS Catal 2:1319–1330

    Article  CAS  Google Scholar 

  32. Ishiguro N, Saida T et al (2013) Structural kinetics of a Pt/C cathode catalyst with practical catalyst loading in an MEA for PEFC operating conditions studied by in situ time-resolved XAFS. Phys Chem Chem Phys 15:18827–18834

    Article  CAS  Google Scholar 

  33. Nagasawa K, Takao S et al (2014) Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques. Phys Chem Chem Phys 16:10075–10087

    Article  CAS  Google Scholar 

  34. Kityakarn S, Saida T et al (2014) In situ time-resolved XAFS of transitional states of Pt/C cathode electrocatalyst in an MEA during PEFC loading with transient voltages. Top Catal 57:903–910

    Article  CAS  Google Scholar 

  35. McBreen J (2009) The application of synchrotron techniques to the study of lithium-ion batteries. J Solid State Electrochem 13:1051–1061

    Article  CAS  Google Scholar 

  36. Dewald HD, Watkins JW et al (1986) Development of extended X-ray absorption fine-structure spectroelectrochemistry and its application to structural studies of transition-metal ions in aqueous-solution. Anal Chem 58:2968–2975

    Article  CAS  Google Scholar 

  37. Kaito T, Mitsumoto H et al (2014) A new spectroelectrochemical cell for in situ measurement of Pt and Au K-edge X-ray absorption fine structure. Rev Sci Instrum 85:084104/1–084104/8

    Article  CAS  Google Scholar 

  38. Masuda T, Fukumitsu H et al (2012) Molecular catalysts confined on and within molecular layers formed on a Si(111) surface with direct Si-C bonds. Adv Mater 24:268–272

    Article  CAS  Google Scholar 

  39. Masuda T, Fukumitsu H et al (2012) Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt-CeOx nanocomposite electrocatalyst - an in situ electrochemical X-ray absorption fine structure study. J Phys Chem C 116:10098–10102

    Article  CAS  Google Scholar 

  40. Melroy OR, Samant MG et al (1988) Inplane structure of underpotentially deposited copper on gold(111) determined by surface EXAFS. Langmuir 4:728–732

    Article  CAS  Google Scholar 

  41. Gorlin Y, Lassalle-Kaiser B et al (2013) In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J Am Chem Soc 135:8525–8534

    Article  CAS  Google Scholar 

  42. Nakanishi K, Kato D et al (2014) Novel spectro-electrochemical cell for in situ/operando observation of common composite electrode with liquid electrolyte by X-ray absorption spectroscopy in the tender X-ray region. Rev Sci Instrum 85:084103/1–084103/6

    CAS  Google Scholar 

  43. Erickson EM, Thorum MS et al (2012) In situ electrochemical X-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux. J Am Chem Soc 134:197–200

    Article  CAS  Google Scholar 

  44. Uehara H, Uemura Y et al (2014) In situ back-side illumination fluorescence XAFS (BI-FXAFS) studies on platinum nanoparticles deposited on a HOPG surface as a model fuel cell: a new approach to the Pt-HOPG electrode/electrolyte interface. Phys Chem Chem Phys 16:13748–13754

    Article  CAS  Google Scholar 

  45. Hachiya T, Honbo H et al (1991) Detailed underpotential deposition of copper on gold(111) in aqueous solution. J Electroanal Chem 315:275–291

    Article  CAS  Google Scholar 

  46. Batina N, Will T et al (1992) Study of the initial stage of copper deposition by in situ scanning tunneling microscopy. Faraday Discuss 94:93–106

    Article  CAS  Google Scholar 

  47. Gewirth AA (1992) Atomic resolution electrochemistry of underpotential deposition processes. AIP Conf Proc 241:253–261

    Article  CAS  Google Scholar 

  48. Finnefrock AC, Buller LJ et al (1997) Time-resolved surface X-ray scattering study of surface ordering of electrodeposited layers. J Am Chem Soc 119:11703–11704

    Article  CAS  Google Scholar 

  49. White JH, Abruña HD (1990) Coadsorption of copper with anions on platinum (111): the role of surface redox chemistry in determining the stability of a metal monolayer. J Phys Chem 94:894–900

    Article  CAS  Google Scholar 

  50. Lucas CA, Markovic NM et al (1996) In situ X-ray scattering study of the Pt(111)-solution interface: ordered anion structures and their influence on copper underpotential deposition. Phys B Condens Matter 221:245–250

    Article  CAS  Google Scholar 

  51. Cappadonia M, Robinson KM et al (1997) X-ray surface diffraction of metal deposits at metal/liquid interfaces. Part I: copper deposit on Au(100). Surf Rev Lett 4:1173–1178

    Article  CAS  Google Scholar 

  52. Chang SC, Weaver MJ (1991) Influence of coadsorbed bismuth and copper on carbon monoxide adlayer structures at ordered low-index platinum-aqueous interfaces. Surf Sci 241:11–24

    Article  CAS  Google Scholar 

  53. Gordon JG, Melroy OR, Toney MF (1995) Structure of metal electrolyte interfaces - copper on gold(111), water on silver(111). Electrochim Acta 40:3–8

    Article  CAS  Google Scholar 

  54. Wu S, Lipkowski J et al (1995) Effect of anion adsorption on early stages of copper electrocrystallization at Au(111) surface. Prog Surf Sci 50:227–236

    Article  CAS  Google Scholar 

  55. Wu S, Shi Z et al (1997) Early stages of copper electrocrystallization: electrochemical and in situ X-ray absorption fine structure studies of coadsorption of copper and chloride at the Au(111) electrode surface. J Phys Chem B 101:10310–10322

    Article  CAS  Google Scholar 

  56. Hotlos J, Magnussen OM (1990) Effect of trace amounts of Cl- in Cu underpotential deposition on Au(111) in perchlorate solutions: an in-situ scanning tunneling microscopy study. Surf Sci 335:129–144

    Article  Google Scholar 

  57. Matsumoto H, Oda I (1993) Coadsorption of copper and halogens on Pt(111) and Au(111) electrode surfaces studied by scanning tunneling microscopy. J Electroanal Chem 356:275–280

    Article  CAS  Google Scholar 

  58. Friebel D, Mbuga F et al (2014) Structure, redox chemistry, and interfacial alloy formation in monolayer and multilayer Cu/Au(111) model catalysts for CO2 electroreduction. J Phys Chem C 118:7954–7961

    Article  CAS  Google Scholar 

  59. Yee HS, Abruña HD (1993) In-situ X-ray-absorption spectroscopy studies of copper underpotentially deposited in the absence and presence of chloride on platinum(111). Langmuir 9:2460–2469

    Article  CAS  Google Scholar 

  60. Yee HS, Abruña HD (1993) In situ X-ray studies of the underpotential deposition of copper on platinum(111). J Phys Chem 97:6278–6288

    Article  CAS  Google Scholar 

  61. Yee HS, Abruña HD (1994) Ab-initio XAFS calculations and in-situ XAFS measurements of copper underpotential deposition on Pt(111) - a comparative-study. J Phys Chem 98:6552–6558

    Article  CAS  Google Scholar 

  62. Gomez R, Yee HS et al (1995) Anion effects and the mechanism of Cu UPD on Pt(111) - X-ray and electrochemical studies. Surf Sci 335:101–109

    Article  CAS  Google Scholar 

  63. Soldo Y, Sibert E et al (2002) In situ X-ray absorption spectroscopy study of copper under potential deposition on Pt(111): role of the anions on the Cu structural arrangement. Electrochim Acta 47:3081–3091

    Article  CAS  Google Scholar 

  64. Samant MG, Borges GL et al (1987) In situ surface extended X-ray absorption fine-structure spectroscopy of a lead monolayer at a silver(111) electrode electrolyte interface. J Am Chem Soc 109:5970–5974

    Article  CAS  Google Scholar 

  65. White JH, Albarelli MJ et al (1988) Surface extended X-ray absorption fine-structure of underpotentially deposited silver on Au(111) electrodes. J Phys Chem 92:4432–4436

    Article  CAS  Google Scholar 

  66. Furtak TE, Wang L et al (1994) Structure of the copper-monolayer/platinum-electrode interface as measured in in situ X-ray absorption spectroscopy. J Electrochem Soc 141:2369–2373

    Article  CAS  Google Scholar 

  67. Prinz H, Strehblow HH (2002) The structure of Cu- and Cd-UPD-layers on a stepped Pt(533) single crystal surface studied by grazing incidence XAFS, XRD and XPS. Electrochim Acta 47:3093–3104

    Article  CAS  Google Scholar 

  68. Lee JRI, O’Malley RL et al (2010) X-ray absorption spectroscopy characterization of Zn underpotential deposition on Au(111) from phosphate supporting electrolyte. Electrochim Acta 55:8532–8538

    Article  CAS  Google Scholar 

  69. Lee JRI, O’Malley RL et al (2009) X-ray absorption spectroscopy characterization of Cu underpotential deposition on Au(111) and organothiol-self-assembled-monolayer-modified Au(111) electrodes from sulfate supporting electrolyte. J Phys Chem C 113:12260–12271

    Article  CAS  Google Scholar 

  70. Lurio LB, Pant L et al (1995) XAS study of the liquid/UPD Cu/Pt interfacial region. Phys B 208&209:413–414

    Article  Google Scholar 

  71. McBreen J, O’Grady WE et al (1991) XANES study of underpotential deposited copper on carbon-supported platinum. J Electroanal Chem 307:229–240

    Article  CAS  Google Scholar 

  72. Price SWT, Rhodes JM et al (2013) Revealing the details of the surface composition of electrochemically prepared Au@Pd core@shell nanoparticles with in situ EXAFS. J Phys Chem C 117:24858–24865

    Article  CAS  Google Scholar 

  73. Seo M, Habazaki H et al (2014) In situ X-ray absorption spectroscopy study of Sn underpotential deposition on Ni from perchloric acid. J Electrochem Soc 161:H195–H202

    Article  CAS  Google Scholar 

  74. McBreen J, Sansone M (1994) In situ X-ray absorption spectroscopic study of adsorbed Pb on carbon-supported Pt. J Electroanal Chem 373:227–233

    Article  CAS  Google Scholar 

  75. Jia Q, Ramaker DE et al (2013) Fundamental aspects of ad-metal dissolution and contamination in low and medium temperature fuel cell electrocatalysis: a Cu based case study using in situ electrochemical X-ray absorption spectroscopy. J Phys Chem C 117:4585–4596

    Article  CAS  Google Scholar 

  76. Mukerjee S, McBreen J (1999) An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts. J Electrochem Soc 146:600–606

    Article  CAS  Google Scholar 

  77. Rose A, Crabb EM et al (2007) Potential dependence of segregation and surface alloy formation of a Ru modified carbon supported Pt catalyst. Electrochim Acta 52:5556–5564

    Article  CAS  Google Scholar 

  78. Rose A, Bilsborrow R et al (2009) In situ Ru K-edge EXAFS of CO adsorption on a Ru modified Pt/C fuel cell catalyst. Electrochim Acta 54:5262–5266

    Article  CAS  Google Scholar 

  79. Roth C, Benker N et al (2005) Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 127:14607–15615

    Article  CAS  Google Scholar 

  80. Scott FJ, Mukerjee S, Ramaker DE (2007) CO coverage/oxidation correlated with PtRu electrocatalyst particle morphology in 0.3 M methanol by in situ XAS. J Electrochem Soc 154:A396–A406

    Article  CAS  Google Scholar 

  81. Scott FJ, Roth C, Ramaker DE (2007) Kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando X-ray absorption near edge spectroscopy. J Phys Chem C 111:11403–11413

    Article  CAS  Google Scholar 

  82. Scott FJ, Mukerjee S, Ramaker DE (2010) Contrast in metal-ligand effects on PtnM electrocatalysts with M equal Ru vs Mo and Sn as exhibited by in situ XANES and EXAFS measurements in methanol. J Phys Chem C 114:442–453

    Article  CAS  Google Scholar 

  83. Melke J, Schoekel A et al (2010) Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by operando X-ray absorption spectroscopy. J Phys Chem C 114:5914–5925

    Article  CAS  Google Scholar 

  84. Pelliccione CJ, Timofeeva EV et al (2013) In situ Ru K-edge X-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst. J Phys Chem C 117:18904–18912

    Article  CAS  Google Scholar 

  85. Stoupin S, Chung E (2006) Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells. J Phys Chem B 110:9932–9938

    Article  CAS  Google Scholar 

  86. Bommarito GM, Acevedo D et al (1994) Potential-dependent structural-changes of underpotentially deposited copper on an iodine-treated platinum surface determined in-situ by surface EXAFS and its polarization dependence. J Electroanal Chem 379:135–150

    Article  Google Scholar 

  87. Carino EV, Crooks RM (2011) Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir 27:4227–4235

    Article  CAS  Google Scholar 

  88. Kordesch KV, Simader GR (1995) Environmental-impact of fuel-cell technology. Chem Rev 95:191–207

    Article  CAS  Google Scholar 

  89. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  90. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4765

    Article  CAS  Google Scholar 

  91. Borup R, Meyers J et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  92. Gasteiger HA, Markovic NM et al (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301

    Article  CAS  Google Scholar 

  93. Gasteiger HA, Markovic NM et al (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 2. Rotating disk electrode studies of CO/H2 mixtures at 62 °C. J Phys Chem 99:16757–16767

    Article  CAS  Google Scholar 

  94. Markovic NM, Schmidt TJ et al (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  CAS  Google Scholar 

  95. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton-exchange membrane fuel-cells. J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  96. Toda T, Igarashi H et al (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  97. Paulus UA, Wokaun A et al (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106:4181–4191

    Article  CAS  Google Scholar 

  98. Stamenkovic VR, Mun BS et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  99. Stamenkovic VR, Fowler B et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  100. Ioroi T, Siroma Z et al (2005) Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem Commun 7:183–188

    Article  CAS  Google Scholar 

  101. Lee KH, Kwon K et al (2008) Synthesis and characterization of nanostructured PtCo-CeO x /C for oxygen reduction reaction. J Power Sources 185:871–875

    Article  CAS  Google Scholar 

  102. Sasaki K, Zhang L et al (2008) Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction. Phys Chem Chem Phys 10:159–167

    Article  CAS  Google Scholar 

  103. Elezovic NR, Babic BM et al (2009) Synthesis and characterization of MoO x -Pt/C and TiO x -Pt/C nano-catalysts for oxygen reduction. Electrochim Acta 54:2404–2409

    Article  CAS  Google Scholar 

  104. Garsany Y, Epshteyn A et al (2010) High-activity, durable oxygen reduction electrocatalyst: nanoscale composite of platinum-tantalum oxyphosphate on vulcan carbon. J Phys Chem Lett 1:1977–1981

    Article  CAS  Google Scholar 

  105. Fugane K, Mori T et al (2011) Activity of oxygen reduction reaction on small amount of amorphous CeO x promoted Pt cathode for fuel cell application. Electrochim Acta 56:3874–3883

    Article  CAS  Google Scholar 

  106. Masuda T, Uosaki K (2004) Construction of organic monolayers with electron transfer function on a hydrogen terminated Si(111) surface via silicon-carbon bond and their electrochemical characteristics in dark and under illumination. Chem Lett 33:788–789

    Article  CAS  Google Scholar 

  107. Masuda T, Shimazu K et al (2008) Construction of mono- and multimolecular layers with electron transfer mediation function and catalytic activity for hydrogen evolution on a hydrogen-terminated Si(111) surface via Si-C bond. J Phys Chem C 112:10923–10930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Kondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Masuda, T., Kondo, T., Uosaki, K. (2017). Solid–Liquid Interfaces. In: Iwasawa, Y., Asakura, K., Tada, M. (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-43866-5_31

Download citation

Publish with us

Policies and ethics