Skip to main content

Abstract

Metal catalysts in nanometer size range are under worldwide investigations due to their fascinating electronic and atomic strucutures which play essential roles in tuning catalytic properties of metal catalysts. Owing to intrinsically high disorder, asymmetric bond distributions, heterogeneity in particle sizes and compositions, as well as strong coupling between the structural properties and environment, nanosized metal catalysts present a number of challenging problems in EXAFS analysis for determining the size, structure, shape, support orientation of nanocatalysts in real time and in reaction conditions. In this chapter we review methods of EXAFS analysis developed in the last two decades for structural characterization of mono- and bi-metallic nanocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert B, Huang F, Zhang H et al (2004) Nanoparticles: strained and stiff. Science 305:651–654

    Article  CAS  Google Scholar 

  2. Zobel M, Neder RB, Kimber SAJ (2015) Universal solvent restructuring induced by colloidal nanoparticles. Science 347:292–294

    Article  CAS  Google Scholar 

  3. Dreaden EC, Alkilany AM, Huang X et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  Google Scholar 

  4. Xu B, Zhang ZC, Wang X (2014) Engineering nanointerfaces for nanocatalysis. Chem Soc Rev 43:7870–7886

    Article  Google Scholar 

  5. Sanchez SI, Menard LD, Bram A et al (2009) The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on γ-Al2O3. J Am Chem Soc 131:7040–7054

    Article  CAS  Google Scholar 

  6. Mostafa S, Behafarid F, Croy JR et al (2010) Shape-dependent catalytic properties of Pt nanoparticles. J Am Chem Soc 132:15714–15719

    Article  CAS  Google Scholar 

  7. Crespo-Quesada M, Yarulin A, Jin M et al (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794

    Article  CAS  Google Scholar 

  8. Jaramillo TF, Jørgensen KP, Bonde J et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  CAS  Google Scholar 

  9. Yudanov IV, Sahnoun R, Neyman KM et al (2002) CO adsorption on Pd nanoparticles: density functional and vibrational spectroscopy studies. J Phys Chem B 107:255–264

    Article  CAS  Google Scholar 

  10. Walsh MJ, Yoshida K, Kuwabara A et al (2012) On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles. Nano Lett 12:2027–2031

    Article  CAS  Google Scholar 

  11. Ruban A, Hammer B, Stoltze P et al (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A: Chem 115:421–429

    Article  CAS  Google Scholar 

  12. Small MW, Kas JJ, Kvashnina KO et al (2014) Effects of adsorbate coverage and bond-length disorder on the d-band center of carbon-supported Pt catalysts. ChemPhysChem 15:1569–1572

    Article  CAS  Google Scholar 

  13. Norskov JK, Bligaard T, Rossmeisl J et al (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  CAS  Google Scholar 

  14. Nørskov JK, Abild-Pedersen F, Studt F et al (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci U S A 108:937–943

    Article  Google Scholar 

  15. Stamenkovic VR, Mun BS, Arenz M et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  16. Huang WJ, Sun R, Tao J et al (2008) Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat Mater 7:308–313

    Article  CAS  Google Scholar 

  17. Ouyang G, Zhu WG, Sun CQ et al (2010) Atomistic origin of lattice strain on stiffness of nanoparticles. Phys Chem Chem Phys 12:1543–1549

    Article  CAS  Google Scholar 

  18. Li L, Wang L-L, Johnson DD et al (2013) Noncrystalline-to-crystalline transformations in Pt nanoparticles. J Am Chem Soc 135:13062–13072

    Article  CAS  Google Scholar 

  19. Frenkel AI, Small MW, Smith JG et al (2013) An in situ study of bond strains in 1 nm Pt catalysts and their sensitivities to cluster–support and cluster–adsorbate interactions. J Phys Chem C 117:23286–23294

    Article  CAS  Google Scholar 

  20. Vermaak JS, Mays CW, Kuhlmann D (1968) On surface stress and surface tension.I. Theoretical considerations. Surf Sci 12:128–133

    Article  CAS  Google Scholar 

  21. Frenkel AI, Nemzer S, Pister I et al (2005) Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J Chem Phys 123:184701–184706

    Article  CAS  Google Scholar 

  22. Roldan Cuenya B, Frenkel AI, Mostafa S et al (2010) Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles. Phys Rev B 82:155450

    Article  CAS  Google Scholar 

  23. Sanchez SI, Small MW, J-M Z et al (2009) Structural characterization of Pt − Pd and Pd − Pt core − shell nanoclusters at atomic resolution. J Am Chem Soc 131:8683–8689

    Article  CAS  Google Scholar 

  24. Frenkel AI, Machavariani VS, Rubshtein A et al (2000) Local structure of disordered Au-Cu and Au-Ag alloys. Phys Rev B 62:9364–9371

    Article  CAS  Google Scholar 

  25. Frenkel AI, Stern EA, Voronel A et al (1996) Lattice strains in disordered mixed salts. Solid State Commun 99:67–71

    Article  CAS  Google Scholar 

  26. Kibler LA, El-Aziz AM, Hoyer R et al (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084

    Article  CAS  Google Scholar 

  27. Kitchin JR, Nørskov JK, Barteau MA et al (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  28. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  29. Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159

    Article  CAS  Google Scholar 

  30. Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. In: Knozinger H, Gates BC (eds) Advances in catalysis. Academic, New York, pp 71–129

    Google Scholar 

  31. Kitchin JR, Nørskov JK, Barteau MA et al (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120:10240–10246

    Article  CAS  Google Scholar 

  32. Comotti M, Li W-C, Spliethoff B et al (2005) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924

    Article  CAS  Google Scholar 

  33. Graoui H, Giorgio S, Enry CR (2001) Effect of the interface structure on the high-temperature morphology of supported metal clusters. Philos Mag B 81:1649–1658

    Article  CAS  Google Scholar 

  34. Campbell CT, Sharp JC, Yao YX et al (2011) Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts. Faraday Discuss 152:227–239

    Article  CAS  Google Scholar 

  35. Campbell CT, Sellers JRV (2013) Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss 162:9–30

    Article  CAS  Google Scholar 

  36. Xu R, Wang D, Zhang J et al (2006) Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asian J 1:888–893

    Article  CAS  Google Scholar 

  37. Tian N, Zhou Z-Y, Sun S-G et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  38. Karim AM, Prasad V, Mpourmpakis G et al (2009) Correlating particle size and shape of supported Ru/γ-Al2O3 catalysts with NH3 decomposition activity. J Am Chem Soc 131:12230–12239

    Article  CAS  Google Scholar 

  39. Häkkinen H, Abbet S, Sanchez A et al (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42:1297–1300

    Article  Google Scholar 

  40. Kacprzak KA, Akola J, Hakkinen H (2009) First-principles simulations of hydrogen peroxide formation catalyzed by small neutral gold clusters. Phys Chem Chem Phys 11:6359–6364

    Article  CAS  Google Scholar 

  41. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  42. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433

    Article  CAS  Google Scholar 

  43. Tupy SA, Karim AM, Bagia C et al (2012) Correlating ethylene glycol reforming activity with in situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts. ACS Catal 2:2290–2296

    Article  CAS  Google Scholar 

  44. Alayoglu S, Tao F, Altoe V et al (2011) Surface composition and catalytic evolution of Au x Pd1−x (x = 0.25, 0.50 and 0.75) nanoparticles under CO/O2 reaction in Torr pressure regime and at 200 °C. Catal Lett 141:633–640

    Article  CAS  Google Scholar 

  45. Alayoglu S, Zavalij P, Eichhorn B et al (2009) Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt − Ru core − shell and alloy nanoparticles. ACS Nano 3:3127–3137

    Article  CAS  Google Scholar 

  46. Yoshida H, Kuwauchi Y, Jinschek JR et al (2012) Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335:317–319

    Article  CAS  Google Scholar 

  47. Adriano F (2001) EXAFS for liquids. J Phys Condens Matter 13:R23

    Article  Google Scholar 

  48. Sharpe LR, Heineman WR, Elder RC (1990) EXAFS spectroelectrochemistry. Chem Rev 90:705–722

    Article  CAS  Google Scholar 

  49. Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev 104:4613–4636

    Article  CAS  Google Scholar 

  50. Bentrup U (2010) Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem Soc Rev 39:4718–4730

    Article  CAS  Google Scholar 

  51. Comez L, Di Cicco A, Itié JP et al (2001) High-pressure and high-temperature X-ray absorption study of liquid and solid gallium. Phys Rev B 65:014114

    Article  CAS  Google Scholar 

  52. Vankó G, Rueff J-P, Mattila A et al (2006) Temperature- and pressure-induced spin-state transitions in LaCoO3. Phys Rev B 73:024424

    Article  CAS  Google Scholar 

  53. Meunier FC (2010) The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem Soc Rev 39:4602–4614

    Article  CAS  Google Scholar 

  54. Bare SR, Yang N, Kelly SD et al (2007) Design and operation of a high pressure reaction cell for in situ X-ray absorption spectroscopy. Catal Today 126:18–26

    Article  CAS  Google Scholar 

  55. Bare SR, Mickelson GE, Modica FS et al (2006) Simple flow through reaction cells for in situ transmission and fluorescence X-ray-absorption spectroscopy of heterogeneous catalysts. Rev Sci Instrum 77:023105

    Article  CAS  Google Scholar 

  56. Grunwaldt JD, Caravati M, Hannemann S et al (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6:3037–3047

    Article  CAS  Google Scholar 

  57. Grunwaldt J-D, Ramin M, Rohr M et al (2005) High pressure in situ X-ray absorption spectroscopy cell for studying simultaneously the liquid phase and the solid/liquid interface. Rev Sci Instrum 76:054104

    Article  CAS  Google Scholar 

  58. Erickson EM, Oruc ME, Wetzel DJ et al (2014) A comparison of atomistic and continuum approaches to the study of bonding dynamics in electrocatalysis: microcantilever stress and in situ EXAFS observations of platinum bond expansion due to oxygen adsorption during the oxygen reduction reaction. Anal Chem 86:8368–8375

    Article  CAS  Google Scholar 

  59. Glasner D, Frenkel AI (2007) Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conf Proc 882:746–748

    Article  CAS  Google Scholar 

  60. Frenkel AI (2007) Solving the 3D structure of metal nanoparticles. Z Kristallogr 222:605–611

    CAS  Google Scholar 

  61. Small MW, Sanchez SI, Marinkovic NS et al (2012) Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst. ACS Nano 6:5583–5595

    Article  CAS  Google Scholar 

  62. Frenkel AI, Wang Q, Sanchez SI et al (2013) Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys 138:064202

    Article  CAS  Google Scholar 

  63. Menard LD, Wang Q, Kang JH et al (2009) Structural characterization of bimetallic nanomaterials with overlapping X-ray absorption edges. Phys Rev B 80:064111

    Article  CAS  Google Scholar 

  64. Funke H, Scheinost AC, Chukalina M (2005) Wavelet analysis of extended X-ray absorption fine structure data. Phys Rev B 71:094110

    Article  CAS  Google Scholar 

  65. Chukalina MV, Dubrovskii YV, Funke H (2004) Wavelet analysis and its application in tunneling and X-ray spectroscopy. Low Temp Phys 30:930–936

    Article  CAS  Google Scholar 

  66. Filez M, Redekop EA, Poelman H et al (2015) Advanced elemental characterization during Pt–In catalyst formation by wavelet transformed X-ray absorption spectroscopy. Anal Chem 87:3520–3526

    Article  CAS  Google Scholar 

  67. Filez M, Redekop EA, Poelman H et al (2014) Unravelling the formation of Pt–Ga alloyed nanoparticles on calcined Ga-modified hydrotalcites by in situ XAS. Chem Mater 26:5936–5949

    Article  CAS  Google Scholar 

  68. Antoniak C (2011) Extended X-ray absorption fine structure of bimetallic nanoparticles. Beilstein J Nanotechnol 2:237–251

    Article  CAS  Google Scholar 

  69. Ferri D, Kumar MS, Wirz R et al (2010) First steps in combining modulation excitation spectroscopy with synchronous dispersive EXAFS/DRIFTS/mass spectrometry for in situ time resolved study of heterogeneous catalysts. Phys Chem Chem Phys 12:5634–5646

    Article  CAS  Google Scholar 

  70. Eyssler A, Kleymenov E, Kupferschmid A et al (2011) Improvement of catalytic activity of LaFe0.95Pd0.05O3 for methane oxidation under transient conditions. J Phys Chem C 115:1231–1239

    Article  CAS  Google Scholar 

  71. Ferri D, Newton MA, Di Michiel M et al (2013) Synchrotron high energy X-ray methods coupled to phase sensitive analysis to characterize aging of solid catalysts with enhanced sensitivity. Phys Chem Chem Phys 15:8629–8639

    Article  CAS  Google Scholar 

  72. König CFJ, van Bokhoven JA, Schildhauer TJ et al (2012) Quantitative analysis of modulated excitation X-ray absorption spectra: enhanced precision of EXAFS fitting. J Phys Chem C 116:19857–19866

    Article  CAS  Google Scholar 

  73. König CFJ, Schildhauer TJ, Nachtegaal M (2013) Methane synthesis and sulfur removal over a Ru catalyst probed in situ with high sensitivity X-ray absorption spectroscopy. J Catal 305:92–100

    Article  CAS  Google Scholar 

  74. Patlolla A, Baumann P, Xu W et al (2013) Characterization of metal-oxide catalysts in operando conditions by combining X-ray absorption and raman spectroscopies in the same experiment. Top Catal 56:896–904

    Article  CAS  Google Scholar 

  75. Frenkel AI, Wang Q, Marinkovic N et al (2011) Combining X-ray absorption and X-ray diffraction techniques for in situ studies of chemical transformations in heterogeneous catalysis: advantages and limitations. J Phys Chem C 115:17884–17890

    Article  CAS  Google Scholar 

  76. Patlolla A, Carino EV, Ehrlich SN et al (2012) Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal 2:2216–2223

    Article  CAS  Google Scholar 

  77. Chen Y, Fulton JL, Linehan JC et al (2005) In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane. J Am Chem Soc 127:3254–3255

    Article  CAS  Google Scholar 

  78. Beale AM, van der Eerden AMJ, Kervinen K et al (2005) Adding a third dimension to operando spectroscopy: a combined UV-Vis, Raman and XAFS setup to study heterogeneous catalysts under working conditions. Chem Commun 3015–3017

    Google Scholar 

  79. Newton MA, Jyoti B, Dent AJ et al (2004) Synchronous, time resolved, diffuse reflectance FT-IR, energy dispersive EXAFS (EDE) and mass spectrometric investigation of the behaviour of Rh catalysts during NO reduction by CO. Chem Commun 2382–2383

    Google Scholar 

  80. Bordiga S, Groppo E, Agostini G et al (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113:1736–1850

    Article  CAS  Google Scholar 

  81. Singh J, Lamberti C, van Bokhoven JA (2010) Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem Soc Rev 39:4754–4766

    Article  CAS  Google Scholar 

  82. van Bokhoven JA, Louis C, Miller JT et al (2006) Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. Angew Chem 118:4767–4770

    Article  Google Scholar 

  83. Tromp M, van Bokhoven JA, Safonova OV et al (2007) High energy resolution fluorescence detection X‐ray absorption spectroscopy: detection of adsorption sites in supported metal catalysts. AIP Conf Proc 882:651–653

    Article  CAS  Google Scholar 

  84. Glatzel P, Singh J, Kvashnina KO et al (2010) In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO. J Am Chem Soc 132:2555–2557

    Article  CAS  Google Scholar 

  85. Hübner M, Koziej D, Bauer M et al (2011) The structure and behavior of platinum in SnO2-based sensors under working conditions. Angew Chem Int Ed 50:2841–2844

    Article  CAS  Google Scholar 

  86. Oudenhuijzen MK, van Bokhoven JA, Miller JT et al (2005) Three-site model for hydrogen adsorption on supported platinum particles: influence of support ionicity and particle size on the hydrogen coverage. J Am Chem Soc 127:1530–1540

    Article  CAS  Google Scholar 

  87. Tromp M, Slagt MQ, Klein Gebbink RJM et al (2004) Atomic XAFS as a probe of electron transfer within organometallic complexes: data analysis and theoretical calculations. Phys Chem Chem Phys 6:4397–4406

    Article  CAS  Google Scholar 

  88. Porosoff MD, Yu W, Chen JG (2013) Challenges and opportunities in correlating bimetallic model surfaces and supported catalysts. J Catal 308:2–10

    Article  CAS  Google Scholar 

  89. Evans J (1989) EXAFS in the study of catalysts. In: Bond GC, Webb G (ed) Catalysis: volume 8, The Royal Society of Chemistry, p 1–41

    Google Scholar 

  90. Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray-absorption fine structure. Phys Rev Lett 27:1204–1207

    Article  CAS  Google Scholar 

  91. Stern EA (1974) Theory of the extended X-ray-absorption fine structure. Phys Rev B 10:3027–3037

    Article  CAS  Google Scholar 

  92. Lytle FW, Sayers DE, Stern EA (1975) Extended X-ray-absorption fine-structure technique. II. Experimental practice and selected results. Phys Rev B 11:4825–4835

    Article  CAS  Google Scholar 

  93. Stern EA, Sayers DE, Lytle FW (1975) Extended X-ray-absorption fine-structure technique. III. Determination of physical parameters. Phys Rev B 11:4836–4846

    Article  CAS  Google Scholar 

  94. Lee PA, Pendry JB (1975) Theory of the extended X-ray absorption fine structure. Phys Rev B 11:2795–2811

    Article  CAS  Google Scholar 

  95. Sinfelt JH, Via GH, Lytle FW (1978) Extended X-ray absorption fine structure (EXAFS) of supported platinum catalysts. J Chem Phys 68:2009–2010

    Article  Google Scholar 

  96. Via GH, Sinfelt JH, Lytle FW (1979) Extended X-ray absorption fine structure (EXAFS) of dispersed metal catalysts. J Chem Phys 71:690–699

    Article  CAS  Google Scholar 

  97. Sinfelt JH, Via GH, Lytle FW (1980) Structure of bimetallic clusters. Extended X-ray absorption fine structure (EXAFS) studies of Ru–Cu clusters. J Chem Phys 72:4832–4844

    Article  CAS  Google Scholar 

  98. Via GH, Sinfelt JH, Lytle FW (1981) EXAFS studies of supported metal catalysts. In: Joy DC, Teo BK (eds) EXAFS spectroscopy. Springer, New York, pp 159–162

    Chapter  Google Scholar 

  99. Mustre J, Yacoby Y, Stern EA et al (1990) Analysis of experimental extended X-ray-absorption fine-structure (EXAFS) data using calculated curved-wave, multiple-scattering EXAFS spectra. Phys Rev B 42:10843–10851

    Article  CAS  Google Scholar 

  100. Frenkel AI, Yevick A, Cooper C et al (2011) Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu Rev Anal Chem 4:23–39

    Article  CAS  Google Scholar 

  101. Calvin S, Miller MM, Goswami R et al (2003) Determination of crystallite size in a magnetic nanocomposite using extended X-ray absorption fine structure. J Appl Phys 94:778–783

    Article  CAS  Google Scholar 

  102. Montejano-Carrizales JM, Aguilera-Granja F, Morán-López JL (1997) Direct enumeration of the geometrical characteristics of clusters. Nanostruct Mater 8:269–287

    Article  CAS  Google Scholar 

  103. Montejano-Carrizales JM, Morán-López JL (1992) Geometrical characteristics of compact nanoclusters. Nanostruct Mater 1:397–409

    Article  CAS  Google Scholar 

  104. Li Y, Zakharov D, Zhao S et al (2015) Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes. Nat Commun

    Google Scholar 

  105. Frenkel AI, Frankel SC, Liu T (2005) Structural stability of giant polyoxomolybdate molecules as probed by EXAFS. Phys Sci 2005:721

    Article  Google Scholar 

  106. Frenkel AI, Hills CW, Nuzzo RG (2001) A view from the inside: complexity in the atomic scale ordering of supported metal nanoparticles. J Phys Chem B 105:12689–12703

    Article  CAS  Google Scholar 

  107. Roldan Cuenya B, Croy JR, Mostafa S et al (2010) Solving the structure of size-selected Pt nanocatalysts synthesized by inverse micelle encapsulation. J Am Chem Soc 132:8747–8756

    Article  CAS  Google Scholar 

  108. Stern EA (1988) Theory of EXAFS. In: Koningsberger DC, Prins R (eds) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. John Wiley & Sons, New York

    Google Scholar 

  109. Yevick A, Frenkel AI (2010) Effects of surface disorder on EXAFS modeling of metallic clusters. Phys Rev B 81:115451

    Article  CAS  Google Scholar 

  110. Chill ST, Anderson RM, Yancey DF et al (2015) Probing the limits of conventional extended X-ray absorption fine structure analysis using thiolated gold nanoparticles. ACS Nano 9:4036–4042

    Article  CAS  Google Scholar 

  111. Roscioni OM, Zonias N, Price SWT et al (2011) Computational prediction of L 3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations. Phys Rev B 83:115409

    Article  CAS  Google Scholar 

  112. Vila F, Rehr JJ, Kas J et al (2008) Dynamic structure in supported Pt nanoclusters: real-time density functional theory and X-ray spectroscopy simulations. Phys Rev B 78:121404

    Article  CAS  Google Scholar 

  113. Frenkel A, Yang J, Johnson D et al (2009) Nanoscale atomic clusters, complexity of. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 5889–5912

    Chapter  Google Scholar 

  114. Frenkel AI (1999) Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J Synchrotron Radiat 6:293–295

    Article  CAS  Google Scholar 

  115. Frenkel AI, Cason MW, Elsen A et al (2014) Critical review: effects of complex interactions on structure and dynamics of supported metal catalysts. J Vac Sci Technol A 32:020801

    Article  CAS  Google Scholar 

  116. Matos J, Ono LK, Behafarid F et al (2012) In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects. Phys Chem Chem Phys 14:11457–11467

    Article  CAS  Google Scholar 

  117. Paredis K, Ono LK, Mostafa S et al (2011) Structure, chemical composition, and reactivity correlations during the in situ oxidation of 2-Propanol. J Am Chem Soc 133:6728–6735

    Article  CAS  Google Scholar 

  118. Munoz-Paez A, Koningsberger DC (1995) Decomposition of the precursor [Pt(NH3)4](OH)2, genesis and structure of the metal-support interface of alumina supported platinum particles: a structural study using TPR, MS, and XAFS spectroscopy. J Phys Chem 99:4193–4204

    Article  CAS  Google Scholar 

  119. Giovanetti LJ, Ramallo-López JM, Foxe M et al (2012) Shape changes of Pt nanoparticles induced by deposition on mesoporous silica. Small 8:468–473

    Article  CAS  Google Scholar 

  120. Vaarkamp M, Miller JT, Modica FS et al (1996) On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/γ-Al2O3. J Catal 163:294–305

    Article  CAS  Google Scholar 

  121. Vaarkamp M, Modica FS, Miller JT et al (1993) Influence of hydrogen pretreatment on the structure of the metal-support interface in Pt/zeolite catalysts. J Catal 144:611–626

    Article  CAS  Google Scholar 

  122. Jentys A (1999) Estimation of mean size and shape of small metal particles by EXAFS. Phys Chem Chem Phys 1:4059–4063

    Article  CAS  Google Scholar 

  123. Beale AM, Weckhuysen BM (2010) EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles. Phys Chem Chem Phys 12:5562–5574

    Article  CAS  Google Scholar 

  124. Long NV, Asaka T, Matsubara T et al (2011) Shape-controlled synthesis of Pt–Pd core–shell nanoparticles exhibiting polyhedral morphologies by modified polyol method. Acta Mater 59:2901–2907

    Article  CAS  Google Scholar 

  125. Long NV, Duy Hien T, Asaka T et al (2011) Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. Int J Hydr Energ 36:8478–8491

    Article  CAS  Google Scholar 

  126. Anderson JA, Garcia MF (eds) (2005) Supported metals in catalysis. Imperial College Press, London

    Google Scholar 

  127. Guczi L (2005) Bimetallic nano-particles: featuring structure and reactivity. Catal Today 101:53–64

    Article  CAS  Google Scholar 

  128. Bukhtiyarov VG, Slin’ko M (2001) Metallic nanosystems in catalysis. Russ Chem Rev 70:147–159

    Article  CAS  Google Scholar 

  129. Bazin D, Mottet C, Tréglia G (2000) New opportunities to understand heterogeneous catalysis processes on nanoscale bimetallic particles through synchrotron radiation and theoretical studies. Appl Catal A: Gen 200:47–54

    Article  CAS  Google Scholar 

  130. Rase HF (2000) Handbook of commercial catalysts: heterogeneous catalysts. CRC Press, Boca Raton

    Book  Google Scholar 

  131. Yang OB, Woo SI, Kim YG (1994) Comparison of platinum-iridium bimetallic catalysts supported on γ-alumina and HY-zeolite in n-hexane reforming reaction. Appl Catal A: Gen 115:229–241

    Article  CAS  Google Scholar 

  132. Nashner MS, Frenkel AI, Adler DL et al (1997) Structural characterization of carbon-supported platinum − ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 119:7760–7771

    Article  CAS  Google Scholar 

  133. Nashner MS, Frenkel AI, Somerville D et al (1998) Core shell inversion during nucleation and growth of bimetallic Pt/Ru nanoparticles. J Am Chem Soc 120:8093–8101

    Article  CAS  Google Scholar 

  134. Hills CW, Nashner MS, Frenkel AI et al (1999) Carbon support effects on bimetallic Pt − Ru nanoparticles formed from molecular precursors. Langmuir 15:690–700

    Article  CAS  Google Scholar 

  135. Knecht MR, Weir MG, Frenkel AI et al (2007) Structural rearrangement of bimetallic alloy PdAu nanoparticles within dendrimer templates to yield core/shell configurations. Chem Mater 20:1019–1028

    Article  CAS  Google Scholar 

  136. Weir MG, Knecht MR, Frenkel AI et al (2009) Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26:1137–1146

    Article  CAS  Google Scholar 

  137. Toshima N, Harada M, Yonezawa T et al (1991) Structural analysis of polymer-protected palladium/platinum bimetallic clusters as dispersed catalysts by using extended X-ray absorption fine structure spectroscopy. J Phys Chem 95:7448–7453

    Article  CAS  Google Scholar 

  138. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  139. Asakura K, Bian CR, Suzuki S et al (2005) An XAFS study on the polymer protected CuPd bimetallic nanoparticles – a novel heterobond-philic structure. Phys Sci T115:781

    Article  CAS  Google Scholar 

  140. Harada M, Asakura K, Toshima N (1994) Structural analysis of polymer-protected platinum/rhodium bimetallic clusters using extended X-ray absorption fine structure spectroscopy. Importance of microclusters for the formation of bimetallic clusters. J Phys Chem 98:2653–2662

    Article  CAS  Google Scholar 

  141. Kulkarni UD, Banerjee S, Krishnan RV (1985) On clustering and ordering instabilities in FCC solid solutions. Mater Sci Forum 3:111–121

    Article  CAS  Google Scholar 

  142. Ma E (2005) Alloys created between immiscible elements. Prog Mater Sci 50:413–509

    Article  CAS  Google Scholar 

  143. Cowley JM (1950) An approximate theory of order in alloys. Phys Rev 77:669–675

    Article  CAS  Google Scholar 

  144. Cowley JM (1960) Short- and long-range order parameters in disordered solid solutions. Phys Rev 120:1648–1657

    Article  CAS  Google Scholar 

  145. Cowley JM (1965) Short-range order and long-range order parameters. Phys Rev 138:A1384–A1389

    Article  Google Scholar 

  146. Agostini G, Pellegrini R, Leofanti G et al (2009) Determination of the particle size, available surface area, and nature of exposed sites for silica-alumina-supported Pd nanoparticles: a multitechnical approach. J Phys Chem C 113:10485–10492

    Article  CAS  Google Scholar 

  147. Hwang B-J, Sarma LS, Chen J-M et al (2005) Structural models and atomic distribution of bimetallic nanoparticles as investigated by X-ray absorption spectroscopy. J Am Chem Soc 127:11140–11145

    Article  CAS  Google Scholar 

  148. Frenkel AI (2012) Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev 41:8163–8178

    Article  CAS  Google Scholar 

  149. Flavell WR, Mian M, Roberts AJ et al (1997) EXAFS studies of SrSn1-xSbxO3 and BaPb1-xBixO3. J Mater Chem 7:357–364

    Article  CAS  Google Scholar 

  150. Michel CG, Bambrick WE, Ebel RH et al (1995) Reducibility of rhenium in Pt-Re/Al2O3 reforming catalysts: a temperature programmed reduction-X-ray-absorption near-edge structure study. J Catal 154:222–229

    Article  CAS  Google Scholar 

  151. Rønning M, Gjervan T, Prestvik R et al (2001) Influence of pretreatment temperature on the bimetallic interactions in Pt-Re/Al2O3 reforming catalysts studied by X-ray absorption spectroscopy. J Catal 204:292–304

    Article  CAS  Google Scholar 

  152. Ravel B, Bouldin CE, Renevier H et al (1999) Edge separation using diffraction anomalous fine structure. J Synchrotron Radiat 6:338–340

    Article  CAS  Google Scholar 

  153. Ravel B, Bouldin CE, Renevier H et al (1999) X-ray-absorption edge separation using diffraction anomalous fine structure. Phys Rev B 60:778–785

    Article  CAS  Google Scholar 

  154. Glatzel P, de Groot FMF, Manoilova O et al (2005) Range-extended EXAFS at the L edge of rare earths using high-energy-resolution fluorescence detection: A study of La in LaOCl. Phys Rev B 72:014117

    Article  CAS  Google Scholar 

  155. Yano J, Pushkar Y, Glatzel P et al (2005) High-resolution Mn EXAFS of the oxygen-evolving complex in photosystem II: structural implications for the Mn4Ca cluster. J Am Chem Soc 127:14974–14975

    Article  CAS  Google Scholar 

  156. Pushkar Y, Yano J, Glatzel P et al (2007) Structure and orientation of the Mn4Ca cluster in plant photosystem II membranes studied by polarized range-extended X-ray absorption spectroscopy. J Biol Chem 282:7198–7208

    Article  CAS  Google Scholar 

  157. Frenkel AI, van Bokhoven JA (2014) X-ray spectroscopy for chemical and energy sciences: the case of heterogeneous catalysis. J Synchrotron Radiat 21:1084–1089

    Article  CAS  Google Scholar 

  158. Hitchcock AP, Toney MF (2014) Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications. J Synchrotron Radiat 21:1019–1030

    Article  CAS  Google Scholar 

  159. Kang HC, Yan H, Chu YS et al (2013) Oxidation of PtNi nanoparticles studied by a scanning X-ray fluorescence microscope with multi-layer Laue lenses. Nanoscale 5:7184–7187

    Article  CAS  Google Scholar 

  160. Fraile Rodríguez A, Nolting F, Bansmann J et al (2007) X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy. J Magn Magn Mater 316:426–428

    Article  CAS  Google Scholar 

  161. Xin HL, Alayoglu S, Tao R et al (2014) Revealing the atomic restructuring of Pt–Co nanoparticles. Nano Lett 14:3203–3207

    Article  CAS  Google Scholar 

  162. Vendelbo SB, Elkjær CF, Falsig H et al (2014) Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 13:884–890

    Article  CAS  Google Scholar 

  163. Billinge SJL, Levin I (2007) The problem with determining atomic structure at the nanoscale. Science 316:561–565

    Article  CAS  Google Scholar 

  164. Zhao S, Li Y, Zakharov D et al Operando characterization of catalysts with a portable microreactor

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly I. Frenkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Frenkel, A.I. (2017). Metal Nanocatalysts. In: Iwasawa, Y., Asakura, K., Tada, M. (eds) XAFS Techniques for Catalysts, Nanomaterials, and Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-43866-5_19

Download citation

Publish with us

Policies and ethics