Skip to main content

Animal Models to Study AMPK

  • Chapter
  • First Online:
AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

AMPK is an evolutionary conserved energy sensor involved in the regulation of energy metabolism. Based on biochemical studies, AMPK has brought much of interest in recent years due to its potential impact on metabolic disorders. Suitable animal models are therefore essential to promote our understanding of the molecular and functional roles of AMPK but also to bring novel information for the development of novel therapeutic strategies. The organism systems include pig (Sus scrofa), mouse (Mus musculus), fly (Drosophila melanogaster), worm (Caenorhabditis elegans), and fish (Danio rerio) models. These animal models have provided reliable experimental evidence demonstrating the crucial role of AMPK in the regulation of metabolism but also of cell polarity, autophagy, and oxidative stress. In this chapter, we update the new development in the generation and application of animal models for the study of AMPK biology. We also discuss recent breakthroughs from studies in mice, flies, and worms showing how AMPK has a primary role in initiating or promoting pathological or beneficial impact on health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F et al (2005) Increased alpha2 subunit-associated AMPK activity and PRKAG2 cardiomyopathy. Circulation 112(20):3140–3148

    Article  CAS  PubMed  Google Scholar 

  • Akman HO et al (2007) Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res 62(4):499–504

    Article  CAS  PubMed  Google Scholar 

  • Andreelli F et al (2006) Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147(5):2432–2441

    Article  CAS  PubMed  Google Scholar 

  • Apfeld J et al (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arad M et al (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109(3):357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arad M et al (2003) Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 107(22):2850–2856

    Article  CAS  PubMed  Google Scholar 

  • Arad M et al (2005) Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med 352(4):362–372

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SK et al (2007) A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Biochem Biophys Res Commun 360(2):381–387

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SK et al (2010a) Activation of cardiac hypertrophic signaling pathways in a transgenic mouse with the human PRKAG2 Thr400Asn mutation. Biochim Biophys Acta 1802(2):284–291

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SK et al (2010b) SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 49(4):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes BR et al (2004) The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279(37):38441–38447

    Article  CAS  PubMed  Google Scholar 

  • Barnes BR et al (2005) Changes in exercise-induced gene expression in 5′-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Diabetes 54(12):3484–3489

    Article  CAS  PubMed  Google Scholar 

  • Barre L et al (2007) Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Am J Physiol 292(3):E802–E811

    CAS  Google Scholar 

  • Baylis HA, Vazquez-Manrique RP (2011) Reverse genetic strategies in Caenorhabditis elegans: towards controlled manipulation of the genome. ScientificWorldJournal 11:1394–1410

    Article  CAS  PubMed  Google Scholar 

  • Bayrak F et al (2006) Ventricular pre-excitation and cardiac hypertrophy mimicking hypertrophic cardiomyopathy in a Turkish family with a novel PRKAG2 mutation. Eur J Heart Fail 8(7):712–715

    Article  CAS  PubMed  Google Scholar 

  • Blagih J et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Blair E et al (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10(11):1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Bland ML et al (2010) AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Dev Biol 344(1):293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulin T, Hobert O (2012) From genes to function: the C. elegans genetic toolbox. Wiley Interdiscip Rev Dev Biol 1(1):114–137

    Article  CAS  PubMed  Google Scholar 

  • Buhl ES et al (2002) Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51(7):2199–2206

    Article  CAS  PubMed  Google Scholar 

  • Burkewitz K et al (2014) AMPK at the nexus of energetics and aging. Cell Metab 20(1):10–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkewitz K et al (2015) Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell 160(5):842–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burwinkel B et al (2005) Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet 76(6):1034–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabreiro F et al (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZP et al (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279(5):E1202–E1206

    CAS  PubMed  Google Scholar 

  • Cheung PC et al (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciobanu D et al (2001) Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159(3):1151–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claret M et al (2007) AMPK is essential for energy homeostasis regulation and glucose-sensing by POMC and AgRP neurons. J Clin Invest 117(8):2325–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook M et al (2012) Increased RhoA prenylation in the loechrig (loe) mutant leads to progressive neurodegeneration. PLoS One 7(9), e44440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook M et al (2014) Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKgamma mutant Loechrig. PLoS One 9(2), e89847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cool B et al (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3(6):403–416

    Article  CAS  PubMed  Google Scholar 

  • Costford SR et al (2007) Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS One 2(9), e903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunningham KA et al (2014) Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet 10(6), e1004394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel T, Carling D (2002) Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J Biol Chem 277(52):51017–51024

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta B, Milbrandt J (2009) AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 16(2):256–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta B et al (2012) The AMPK beta2 subunit is required for energy homeostasis during metabolic stress. Mol Cell Biol 32(14):2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies JK et al (2006) Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff-Parkinson-White syndrome. Am J Physiol 290(5):H1942–H1951

    CAS  Google Scholar 

  • Deak P et al (1997) P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: correlation of physical and cytogenetic maps in chromosomal region 86E-87F. Genetics 147(4):1697–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietzl G et al (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448(7150):151–156

    Article  CAS  PubMed  Google Scholar 

  • Dockendorff TC et al (2000) Genetic characterization of the 44D-45B region of the Drosophila melanogaster genome based on an F2 lethal screen. Mol Gen Genet 263(1):137–143

    Article  CAS  PubMed  Google Scholar 

  • Dzamko N et al (2010) AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem 285(1):115–122

    Article  CAS  PubMed  Google Scholar 

  • Enfalt AC et al (1997) Estimated frequency of the RN- allele in Swedish Hampshire pigs and comparison of glycolytic potential, carcass composition, and technological meat quality among Swedish Hampshire, Landrace, and Yorkshire pigs. J Anim Sci 75(11):2924–2935

    Article  CAS  PubMed  Google Scholar 

  • Essen-Gustavsson B et al (2011) Muscle glycogen resynthesis, signalling and metabolic responses following acute exercise in exercise-trained pigs carrying the PRKAG3 mutation. Exp Physiol 96(9):927–937

    Article  CAS  PubMed  Google Scholar 

  • Estrade M et al (1994) Enzyme activities of glycogen metabolism and mitochondrial characteristics in muscles of RN- carrier pigs (Sus scrofa domesticus). Comp Biochem Physiol Biochem Mol Biol 108(3):295–301

    Article  CAS  PubMed  Google Scholar 

  • Folmes KD et al (2009) Distinct early signaling events resulting from the expression of the PRKAG2 R302Q mutant of AMPK contribute to increased myocardial glycogen. Circ Cardiovasc Genet 2(5):457–466

    Article  CAS  PubMed  Google Scholar 

  • Fontana L et al (2010) Extending healthy life span—from yeast to humans. Science 328(5976):321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foretz M et al (2010) Maintenance of red blood cell integrity by AMP-activated protein kinase alpha1 catalytic subunit. FEBS Lett 584(16):3667–3671

    Article  CAS  PubMed  Google Scholar 

  • Foretz M et al (2011) The AMPKgamma1 subunit plays an essential role in erythrocyte membrane elasticity, and its genetic inactivation induces splenomegaly and anemia. FASEB J 25(1):337–347

    Article  CAS  PubMed  Google Scholar 

  • Fu X et al (2013) AMP-activated protein kinase alpha1 but not alpha2 catalytic subunit potentiates myogenin expression and myogenesis. Mol Cell Biol 33(22):4517–4525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2015) AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J Biol Chem 290(44):26445–26456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2016) Obesity impairs skeletal muscle regeneration through inhibition of AMPK. Diabetes 65(1):188–200

    CAS  PubMed  Google Scholar 

  • Fujii N et al (2000) Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273(3):1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Fujii N et al (2005) AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. J Biol Chem 280(47):39033–39041

    Article  CAS  PubMed  Google Scholar 

  • Fujii N et al (2007) Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle -Insight from analysis of a transgenic mouse model. Diabetes Res Clin Pract 77(Suppl 1):S92–98

    Google Scholar 

  • Fukuyama M et al (2012) C. elegans AMPKs promote survival and arrest germline development during nutrient stress. Biol Open 1(10):929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullerton MD et al (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galic S et al (2011) Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121(12):4903–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Roves PM et al (2008) Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 283(51):35724–35734

    Article  CAS  PubMed  Google Scholar 

  • Gollob MH et al (2001a) Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 344(24):1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Gollob MH et al (2001b) Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 104(25):3030–3033

    Article  CAS  PubMed  Google Scholar 

  • Gong H et al (2011) MEF2A binding to the Glut4 promoter occurs via an AMPKalpha2-dependent mechanism. Med Sci Sports Exerc 43(8):1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Granlund A et al (2010) Effects of exercise on muscle glycogen synthesis signalling and enzyme activities in pigs carrying the PRKAG3 mutation. Exp Physiol 95(4):541–549

    Article  CAS  PubMed  Google Scholar 

  • Granlund A et al (2011) The influence of the PRKAG3 mutation on glycogen, enzyme activities and fibre types in different skeletal muscles of exercise trained pigs. Acta Vet Scand 53:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigas B et al (2006) 5-aminoimidazole-4-carboxamide-1-{beta}-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55(4):865–874

    Article  CAS  PubMed  Google Scholar 

  • Gundewar S et al (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104(3):403–411

    Article  CAS  PubMed  Google Scholar 

  • Halseth AE et al (2002) Acute and chronic treatment of ob/ob and db/db mice with AICAR decreases blood glucose concentrations. Biochem Biophys Res Commun 294(4):798–805

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR et al (2001) An activating mutation in the gamma1 subunit of the AMP-activated protein kinase. FEBS Lett 500(3):163–168

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55

    Article  CAS  PubMed  Google Scholar 

  • Hedegaard J et al (2004) UDP-glucose pyrophosphorylase is upregulated in carriers of the porcine RN- mutation in the AMP-activated protein kinase. Proteomics 4(8):2448–2454

    Article  CAS  PubMed  Google Scholar 

  • Huang LS et al (2004) Genetic variations of the porcine PRKAG3 gene in Chinese indigenous pig breeds. Genet Sel Evol 36(4):481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297(3):E578–E591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen G et al (1997) Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17(1):119–121

    Article  CAS  PubMed  Google Scholar 

  • Johnson EC et al (2010) Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS One 5(9), e12799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorgensen SB et al (2004a) The alpha2-5′AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53(12):3074–3081

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen SB et al (2004b) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279(2):1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Kazgan N et al (2010) Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. Mol Biol Cell 21(19):3433–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly BP et al (2009) Severe hypertrophic cardiomyopathy in an infant with a novel PRKAG2 gene mutation: potential differences between infantile and adult onset presentation. Pediatr Cardiol 30(8):1176–1179

    Article  PubMed  Google Scholar 

  • Kim M et al (2014) Mutation in the gamma2-subunit of AMP-activated protein kinase stimulates cardiomyocyte proliferation and hypertrophy independent of glycogen storage. Circ Res 114(6):966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlstedt K et al (2013) AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res 112(8):1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Kone M et al (2014) LKB1 and AMPK differentially regulate pancreatic beta-cell identity. FASEB J 28(11):4972–4985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laforet P et al (2006) A new mutation in PRKAG2 gene causing hypertrophic cardiomyopathy with conduction system disease and muscular glycogenosis. Neuromuscul Disord 16(3):178–182

    Article  PubMed  Google Scholar 

  • Lai YC et al (2014) A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem J 460(3):363–375

    Article  CAS  PubMed  Google Scholar 

  • Lantier L et al (2014) AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. FASEB J 28(7):3211–3224

    Article  CAS  PubMed  Google Scholar 

  • Lee JH et al (2007) Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447(7147):1017–1020

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2008) The Caenorhabditis elegans AMP-activated protein kinase AAK-2 is phosphorylated by LKB1 and is required for resistance to oxidative stress and for normal motility and foraging behavior. J Biol Chem 283(22):14988–14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Young RS et al (2009) Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284(36):23925–23934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li FY et al (2012) Endothelium-selective activation of AMP-activated protein kinase prevents diabetes mellitus-induced impairment in vascular function and reendothelialization via induction of heme oxygenase-1 in mice. Circulation 126(10):1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Lieberthal W et al (2013) Susceptibility to ATP depletion of primary proximal tubular cell cultures derived from mice lacking either the alpha1 or the alpha2 isoform of the catalytic domain of AMPK. BMC Nephrol 14:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindgren K et al (2007) Regulation of the muscle-specific AMP-activated protein kinase alpha2beta2gamma3 complexes by AMP and implications of the mutations in the gamma3-subunit for the AMP dependence of the enzyme. FEBS J 274(11):2887–2896

    Article  CAS  PubMed  Google Scholar 

  • Lippai M et al (2008) SNF4Agamma, the Drosophila AMPK gamma subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4(4):476–486

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2013) Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 8(5), e64603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loffler AS et al (2011) Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 7(7):696–706

    Article  PubMed  CAS  Google Scholar 

  • Luptak I et al (2007) Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. J Clin Invest 117(5):1432–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maarbjerg SJ et al (2009) Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Am J Physiol Endocrinol Metab 297(4):E924–E934

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud AD et al (2015) AMPK deficiency blocks the hypoxic ventilatory response and thus precipitates hypoventilation and apnea. Am J Respir Crit Care Med 193(9):1032–1043

    Article  CAS  Google Scholar 

  • Mair W et al (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maixner DW et al (2015) Adenosine monophosphate-activated protein kinase regulates interleukin-1beta expression and glial glutamate transporter function in rodents with neuropathic pain. Anesthesiology 122(6):1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina PM et al (2006) A novel forward genetic screen for identifying mutations affecting larval neuronal dendrite development in Drosophila melanogaster. Genetics 172(4):2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill GF et al (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273(6 Pt 1):E1107–E1112

    CAS  PubMed  Google Scholar 

  • Milan D et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288(5469):1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Mirouse V et al (2007) LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J Cell Biol 177(3):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura S et al (2009) Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Am J Physiol Endocrinol Metab 296(1):E47–E55

    Article  CAS  PubMed  Google Scholar 

  • Morita H et al (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358(18):1899–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mounier R et al (2013) AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18(2):251–264

    Article  CAS  PubMed  Google Scholar 

  • Mu J et al (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Nakada D et al (2010) Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468(7324):653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narbonne P, Roy R (2006) Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133(4):611–619

    Article  CAS  PubMed  Google Scholar 

  • Narbonne P, Roy R (2009) Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature 457(7226):210–214

    Article  CAS  PubMed  Google Scholar 

  • Ng CH et al (2012) AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci 32(41):14311–14317

    Article  CAS  PubMed  Google Scholar 

  • Nilsson EC et al (2006) Opposite transcriptional regulation in skeletal muscle of AMP-activated protein kinase gamma3 R225Q transgenic versus knock-out mice. J Biol Chem 281(11):7244–7252

    Article  CAS  PubMed  Google Scholar 

  • O’Neill HM et al (2011) AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108(38):16092–16097

    Article  PubMed  PubMed Central  Google Scholar 

  • Obba S et al (2015) The PRKAA1/AMPKalpha1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11(7):1114–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1), e8758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan DA, Hardie DG (2002) A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J 367(Pt 1):179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pehmoller C et al (2009) Genetic disruption of AMPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 297(3):E665–E675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poels J et al (2012) Autophagy and phagocytosis-like cell cannibalism exert opposing effects on cellular survival during metabolic stress. Cell Death Differ 19(10):1590–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier L et al (2008) Characterization of the Drosophila gene-switch system in aging studies: a cautionary tale. Aging cell 7(5):758–770

    Article  CAS  PubMed  Google Scholar 

  • Porto AG et al (2016) Clinical spectrum of PRKAG2 syndrome. Circ Arrhythm Electrophysiol 9(1), e003121

    Article  PubMed  Google Scholar 

  • Ramratnam M et al (2014) Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 3(4), e000899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rockl KS et al (2007) Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56(8):2062–2069

    Article  CAS  PubMed  Google Scholar 

  • Rolf J et al (2013) AMPKalpha1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 43(4):889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218(4570):348–353

    Article  CAS  PubMed  Google Scholar 

  • Russell RR 3rd et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114(4):495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sag D et al (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181(12):8633–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayers S et al (2016) Proglucagon promoter Cre-mediated AMPK deletion in mice increases circulating GLP-1 levels and oral glucose tolerance. PLoS One 11(3), e0149549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaffer BE et al (2015) Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab 22(5):907–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schertel C et al (2013) Systematic screening of a Drosophila ORF library in vivo uncovers Wnt/Wg pathway components. Dev Cell 25(2):207–219

    Article  CAS  PubMed  Google Scholar 

  • Schonke M et al (2015) Skeletal muscle AMP-activated protein kinase gamma1(H151R) overexpression enhances whole body energy homeostasis and insulin sensitivity. Am J Physiol Endocrinol Metab 309(7):E679–E690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulz TJ et al (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293

    Article  CAS  PubMed  Google Scholar 

  • Scott JW et al (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113(2):274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu JS et al (2005) Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation 111(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Song XM et al (2002) 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 45(1):56–65

    Article  CAS  PubMed  Google Scholar 

  • Spasic MR et al (2008) Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 28(25):6419–6429

    Article  CAS  PubMed  Google Scholar 

  • Stapleton D et al (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271(2):611–614

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR et al (2010) Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity. J Biol Chem 285(48):37198–37209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenesen D et al (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17(1):101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenne X et al (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54(12):3101–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G et al (2010) Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo. Diabetologia 53(5):924–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G et al (2015) LKB1 and AMPKalpha1 are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Mol Metab 4(4):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung MM et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swick LL et al (2013) Isolation of AMP-activated protein kinase (AMPK) alleles required for neuronal maintenance in Drosophila melanogaster. Biol Open 2(12):1321–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamas P et al (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton C et al (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273(20):12443–12450

    Article  CAS  PubMed  Google Scholar 

  • Tohyama D, Yamaguchi A (2010) A critical role of SNF1A/dAMPKalpha (Drosophila AMP-activated protein kinase alpha) in muscle on longevity and stress resistance in Drosophila melanogaster. Biochem Biophys Res Commun 394(1):112–118

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2000) Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 118(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  • Treebak JT et al (2006) AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55(7):2051–2058

    Article  CAS  PubMed  Google Scholar 

  • Tschape JA et al (2002) The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J 21(23):6367–6376

    Article  PubMed  PubMed Central  Google Scholar 

  • Tullet JM et al (2014) DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in Caenorhabditis elegans. PLoS Genet 10(2), e1004109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulgherait M et al (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8(6):1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vichaiwong K et al (2010) Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle. Biochem J 431(2):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viollet B et al (2003) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111(1):91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viollet B et al (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci (Landmark Ed) 14:19–44

    Article  CAS  Google Scholar 

  • Wang S et al (2010) AMPKalpha1 deletion shortens erythrocyte life span in mice: role of oxidative stress. J Biol Chem 285(26):19976–19985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S et al (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. Int J Obes (Lond) 39(6):967–976

    Article  CAS  Google Scholar 

  • Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270(2 Pt 1):E299–E304

    CAS  PubMed  Google Scholar 

  • Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277(1 Pt 1):E1–E10

    CAS  PubMed  Google Scholar 

  • Wojtaszewski JF et al (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf CM et al (2008) Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation 117(2):144–154

    Article  CAS  PubMed  Google Scholar 

  • Wu J et al (2013) Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J Biol Chem 288(50):35904–35912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y et al (2015) Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 21(4):373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y et al (2003) Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative alpha2 subunit of AMP-activated protein kinase. J Biol Chem 278(31):28372–28377

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2008) Chronic activation of AMP-activated protein kinase-alpha1 in liver leads to decreased adiposity in mice. Biochem Biophys Res Commun 370(2):248–253

    Article  CAS  PubMed  Google Scholar 

  • Yang S et al (2015) Beta-Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP-activated protein kinase-dependent increase in autophagy. Aging Cell 14(6):1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C et al (2016) Chondrocyte-specific ablation of AMPKalpha1 does not affect bone development or pathogenesis of osteoarthritis in mice. DNA Cell Biol 35(3):156–162

    Article  PubMed  CAS  Google Scholar 

  • Yavari A et al (2016) Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab 23:821–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H et al (2006) Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation. Am J Physiol 291(3):E557–E565

    CAS  Google Scholar 

  • Zhang BL et al (2013) Identification and functional analysis of a novel PRKAG2 mutation responsible for Chinese PRKAG2 cardiac syndrome reveal an important role of non-CBS domains in regulating the AMPK pathway. J Cardiol 62(4):241–248

    Article  PubMed  Google Scholar 

  • Zhang BL et al (2014) Overexpression of G100S mutation in PRKAG2 causes Wolff-Parkinson-White syndrome in zebrafish. Clin Genet 86(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Zhu YP et al (2015) Adenosine 5′-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 194(2):584–594

    Article  CAS  PubMed  Google Scholar 

  • Zong H et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99(25):15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L et al (2005) N488I mutation of the gamma2-subunit results in bidirectional changes in AMP-activated protein kinase activity. Circ Res 97(4):323–328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Viollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viollet, B., Foretz, M. (2016). Animal Models to Study AMPK. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_18

Download citation

Publish with us

Policies and ethics