Skip to main content

Functional Salivary Gland Regeneration by Organ Replacement Therapy

  • Chapter
  • First Online:
Salivary Gland Development and Regeneration

Abstract

The salivary glands are exocrine organs that secrete saliva to maintain oral health and homeostasis. Dysfunctional salivary glands exhibit symptoms of dry mouth, including dental caries and dysfunction in speech and swallowing. Current clinical therapies for dry mouth disease include artificial saliva substitutes or parasympathetic stimulants, but these are transient and palliative approaches. To achieve the functional recovery of dysfunctional salivary glands, salivary gland tissue stem cells are thought to be candidate cell sources for salivary gland tissue repair therapies. In addition, whole salivary gland replacement therapy is expected to be a novel therapy resulting in the regeneration of fully functional salivary glands. The salivary glands arise from their organ germs, which are induced by epithelial-mesenchymal interactions. Recently, we developed a novel bioengineering method, i.e., the organ germ method, which can regenerate the ectodermal organs, including the teeth, hair, lacrimal glands, and salivary glands. The bioengineered salivary glands successfully secrete saliva into the oral cavity and can also improve the symptoms of dry mouth, such as bacterial infection and swallowing dysfunction. In this review, we summarize recent findings and bioengineering methods for salivary gland regeneration therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edgar M, Dawes C, Mullane OD. Saliva and oral health. 3rd ed. London: British Dental Association; 2004.

    Google Scholar 

  2. Tucker AS, Miletich I. Salivary glands; development, adaptations, and disease. London: Karger; 2010.

    Book  Google Scholar 

  3. Avery JK. Oral development and histology. New York: Thieme Press; 2002. p. 292–330.

    Google Scholar 

  4. Tucker AS. Salivary gland development. Semin Cell Dev Biol. 2007;18:237–44.

    Article  PubMed  Google Scholar 

  5. Vissink A, Burlage FR, Spijkervet FK, Jansma J, Coppes RP. Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14:213–25.

    Article  PubMed  Google Scholar 

  6. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP. Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14:199–212.

    Article  PubMed  Google Scholar 

  7. Atkinson JC, Grisius M, Massey W. Salivary hypofunction and xerostomia: diagnosis and treatment. Dent Clin N Am. 2005;49:309–26.

    Article  PubMed  Google Scholar 

  8. Ship JA, Pillemer SR, Baum BJ. Xerostomia and the geriatric patient. J Am Geriatr Soc. 2002;50:535–43.

    Article  PubMed  Google Scholar 

  9. Fox PC. Salivary enhancement therapies. Caries Res. 2004;38:241–6.

    Article  PubMed  Google Scholar 

  10. Kagami H, Wang S, Hai B. Restoring the function of salivary glands. Oral Dis. 2008;14:15–24.

    PubMed  Google Scholar 

  11. Körbling M, Estrov Z. Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med. 2003;349:570–82.

    Article  PubMed  Google Scholar 

  12. Lombaert IM, Brunsting JF, Wierenga PK, Faber H, Stokman MA, Kok T, Visser WH, Kampinga HH, de Haan G, Coppes RP. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS ONE. 2008;3:e2063.

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, Hoque AT, Sun D, Herscher LL, Braddon VR, Delporte C, Baum BJ. Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther. 1999;6(6):505–13.

    Article  PubMed  Google Scholar 

  14. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T. The development of a bioengineered organ germ method. Nat Methods. 2007;4(3):227–30.

    Article  PubMed  Google Scholar 

  15. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–80.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Toyoshima KE, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irié T, Tachikawa T, Sato A, Takeda A, Tsuji T. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun. 2012;3:784.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ogawa M, Oshima M, Imamura A, Sekine Y, Ishida K, Yamashita K, Nakajima K, Hirayama M, Tachikawa T, Tsuji T. Functional salivary gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2498.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hirayama M, Ogawa M, Oshima M, Sekine Y, Ishida K, Yamashita K, Ikeda K, Shimmura S, Kawakita T, Tsubota K, Tsuji T. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun. 2013;4:2497.

    PubMed  PubMed Central  Google Scholar 

  19. Jiménez-Rojo L, Granchi Z, Graf D, Mitsiadis TA. Stem cell fate determination during development and regeneration of ectodermal organs. Front Physiol. 2012;3:107.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pispa J, Thesleff I. Mechanisms of ectodermal organogenesis. Dev Biol. 2003;262(2):195–205.

    Article  PubMed  Google Scholar 

  21. Jaskoll T, Melnick M. Embryonic salivary gland branching morphogenesis. Austin (TX); Madame Curie Bioscience Database [Internet]; 2004.

    Google Scholar 

  22. Knosp WM, Knox SM, Hoffman MP. Salivary gland organogenesis. Wiley Interdiscip Rev Dev Biol. 2012;1(1):69–82.

    Article  PubMed  Google Scholar 

  23. Sakai T. Epithelial branching morphogenesis of salivary gland: exploration of new functional regulators. J Med Investig. 2009;56(Suppl):234–8.

    Article  Google Scholar 

  24. Hsu JC, Yamada KM. Salivary gland branching morphogenesis – recent progress and future opportunities. Int J Oral Sci. 2010;2(3):117–26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harunaga J, Hsu JC, Yamada KM. Dynamics of salivary gland morphogenesis. J Dent Res. 2011;90(9):1070–7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Denny PC, Denny PA. Dynamics of parenchymal cell division, differentiation, and apoptosis in the young adult female mouse submandibular gland. Anat Rec. 1999;254:408–17.

    Article  PubMed  Google Scholar 

  27. Man YG, Ball WD, Marchetti L, Hand AR. Contributions of intercalated duct cells to the normal parenchyma of submandibular glands of adult rats. Anat Rec. 2001;263(2):202–14.

    Article  PubMed  Google Scholar 

  28. Ihrler S, Zietz C, Sendelhofert A, Lang S, Blasenbreu-Vogt S, Löhrs U. A morphogenetic concept of salivary duct regeneration and metaplasia. Virchows Arch. 2002;440(5):519–26.

    Article  PubMed  Google Scholar 

  29. Lombaert IM, MP H. Stem cells in salivary gland development and regeneration. In: Stem cells in craniofacial development and regeneration. Hoboken: Wiley-Blackwell; 2013. p. 271–84.

    Chapter  Google Scholar 

  30. Hayashi Y, Arakaki R, Ishimaru N. Salivary gland and autoimmunity. J Med Investig. 2009;56:185–91.

    Article  Google Scholar 

  31. Fox RI, Stern M, Michelson P. Update in Sjögren syndrome. Curr Opin Rheumatol. 2000;12(5):391–8.

    Article  PubMed  Google Scholar 

  32. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol. 2004;558:561–75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.

    Article  PubMed  Google Scholar 

  34. Segers VFM, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937–42.

    Article  PubMed  Google Scholar 

  35. Rotter N, Oder J, Schlenke P. Isolation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 2008;17(3):509–18.

    Article  PubMed  Google Scholar 

  36. Sugito T, Kagami H, Hata K, Nishiguchi H, Ueda M. Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant. 2004;13(6):691–9.

    Article  PubMed  Google Scholar 

  37. Kishi T, Takao T, Fujita K, Taniguchi H. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun. 2006;340(2):544–52.

    Article  PubMed  Google Scholar 

  38. Takahashi S, Schoch E, Walker NI. Origin of acinar cell regeneration after atrophy of the rat parotid induced by duct obstruction. Int J Exp Pathol. 1998;79:293–301.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hisatomi Y, Okumura K, Nakamura K, Matsumoto S, Satoh A, Nagano K, Yamamoto T, Endo F. Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology. 2004;39(3):667–75.

    Article  PubMed  Google Scholar 

  40. Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, Sugiyama T, Umeyama K, Matsumoto K, Yamamoto T, Endo F. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology. 2003;38(1):104–13.

    Article  PubMed  Google Scholar 

  41. Feng J, Van der Zwaag M, Stokman MA, Van Os R, Coppes RP. Isolation and characterization of human salivary gland cells for stem cell transplantation to reduce radiation-induced hyposalivation. Radiother Oncol. 2009;92:466–71.

    Article  PubMed  Google Scholar 

  42. Okumura K, Shinohara M, Endo F. Capability of tissue stem cells to organize into salivary rudiments. Stem Cells Int. 2012;2012:502136.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nanduri LS, Maimets M, Pringle SA, van der Zwaag M, van Os RP, Coppes RP. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol. 2011;99(3):367–72.

    Article  PubMed  Google Scholar 

  44. Sumita Y et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol. 2011;43:80–7.

    Article  PubMed  Google Scholar 

  45. Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C, Goldsmith CM, Wellner RB, Baum BJ, Wang S. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther. 2005;11(3):444–51.

    Article  PubMed  Google Scholar 

  46. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, Goldsmith CM, Burbelo PD, Citrin DE, Mitchell JB, Nottingham LK, Rudy SF, Van Waes C, Whatley MA, Brahim JS, Chiorini JA, Danielides S, Turner RJ, Patronas NJ, Chen CC, Nikolov NP, Illei GG. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A. 2012;109(47):19403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yin H, Nguyen CQ, Samuni Y, Uede T, Peck AB, Chiorini JA. Local delivery of AAV2-CTLA4IgG decreases sialadenitis and improves gland function in the C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren’s syndrome. Arthritis Res Ther. 2012;14(1):R40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Wang F, Xu J, Ding S, Guo Y. Double-strand adeno-associated virus-mediated exendin-4 expression in salivary glands is efficient in a diabetic rat model. Diabetes Res Clin Pract. 2014;103(3):466–73.

    Article  PubMed  Google Scholar 

  49. Voutetakis A, Bossis I, Kok MR, Zhang W, Wang J, Cotrim AP, Zheng C, Chiorini JA, Nieman LK, Baum BJ. Salivary glands as a potential gene transfer target for gene therapeutics of some monogenetic endocrine disorders. J Endocrinol. 2005;185(3):363–72.

    Article  PubMed  Google Scholar 

  50. Samuni Y, Zheng C, Cawley NX, Cotrim AP, Loh YP, Baum BJ. Sorting of growth hormone-erythropoietin fusion proteins in rat salivary glands. Biochem Biophys Res Commun. 2008;373(1):136–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Samuni Y, Cawley NX, Zheng C, Cotrim AP, Loh YP, Baum BJ. Sorting behavior of a transgenic erythropoietin-growth hormone fusion protein in murine salivary glands. Hum Gene Ther. 2008;19(3):279–86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Voutetakis A, Zheng C, Metzger M, Cotrim AP, Donahue RE, Dunbar CE, Baum BJ. Sorting of transgenic secretory proteins in rhesus macaque parotid glands after adenovirus-mediated gene transfer. Hum Gene Ther. 2008;19(12):1401–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nguyen CQ, Yin H, Lee BH, Chiorini JA, Peck AB. IL17: potential therapeutic target in Sjögren’s syndrome using adenovirus-mediated gene transfer. Lab Investig. 2011;91(1):54–62.

    Article  PubMed  Google Scholar 

  54. Wei C, Larsen M, Hoffman MP, Yamada KM. Self-organization and branching morphogenesis of primary salivary epithelial cells. Tissue Eng. 2007;13(4):721–35.

    Article  PubMed  Google Scholar 

  55. Ishida K, Murofushi M, Nakao K, Morita R, Ogawa M, Tsuji T. The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial-mesenchymal interactions. Biochem Biophys Res Commun. 2011;405(3):455–61.

    Article  PubMed  Google Scholar 

  56. Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the control of its secretion. Berlin: Springer; 2012.

    Google Scholar 

  57. Matsuo R, Yamamoto T, Yoshitaka K, Morimoto T. Neural substrates for reflex salivation induced by taste, mechanical, and thermal stimulation of the oral region in decerebrate rats. Jpn J Physiol. 1989;39:349–57.

    Article  PubMed  Google Scholar 

  58. Matsuo R, Garrett JR, Proctor GB, Carpenter GH. Reflex secretion of proteins into submandibular saliva in conscious rats, before and after preganglionic sympathectomy. J Physiol. 2000;527:175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Proctor GB, Guy HC. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133:3–18.

    Article  PubMed  Google Scholar 

  60. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8(1):3–11.

    Article  PubMed  Google Scholar 

  61. Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11:216–29.

    Article  PubMed  Google Scholar 

  62. Froehlich DA, Pangborn RM, Whitaker JR. The effect of oral stimulation on human parotid salivary flow rate and alpha-amylase secretion. Physiol Behav. 1987;41(3):209–17.

    Article  PubMed  Google Scholar 

  63. Sasano T, Satoh-Kuriwada S, Shoji N, Sekine-Hayakawa Y, Kawai M, Uneyama H. Application of umami taste stimulation to remedy hypogeusia based on reflex salivation. Biol Pharm Bull. 2010;33(11):1791–5.

    Article  PubMed  Google Scholar 

  64. Ogawa M, Yamashita K, Niikura M, Nakajima K, Toyoshima KE, Oshima M, Tsuji T. Saliva secretion in engrafted mouse bioengineered salivary glands using taste stimulation. J Prosthodont Res. 2014;58(1):17–25.

    Article  PubMed  Google Scholar 

  65. Lamy E, Graca G, Costa GD, Franco C, Silva FC, Baptista ES, et al. Changes in mouse whole saliva soluble proteome induced by tannin-enriched diet. Proteome Sci. 2010;8:65.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237:1555–62.

    PubMed  Google Scholar 

  67. Sreebny LM, Schwartz SS. A reference guide to drugs and dry mouth – 2nd edition. Gerodontology. 1997;14(1):33–47.

    Article  PubMed  Google Scholar 

  68. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497–505.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12(4):243–52.

    Article  PubMed  Google Scholar 

  70. Yan X, Qin H, Qu C, Tuan RS, Shi S, Huang GT. iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev. 2010;19(4):469–80.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472(7341):51–6.

    Article  PubMed  Google Scholar 

  72. Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y. Self-formation of functional adenohypophysis in three-dimensional culture. Nature. 2011;480(7375):57–62.

    Article  PubMed  Google Scholar 

  73. Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun. 2016;7:10351.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for KIBAN (A) from the Ministry of Education, Culture, Sports, Science and Technology (no. 25242041). This work was also partially supported by Organ Technologies, Inc.

Conflict of Interest

This work was partially funded by Organ Technologies Inc. M.O. is a researcher and T.T. is a director at Organ Technologies Inc. This work was performed under an Invention Agreement between Tokyo University of Science, RIKEN and Organ Technologies Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ogawa, M., Tsuji, T. (2017). Functional Salivary Gland Regeneration by Organ Replacement Therapy. In: Cha, S. (eds) Salivary Gland Development and Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-43513-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43513-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43511-4

  • Online ISBN: 978-3-319-43513-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics