Skip to main content

Co-exploring Actuator Antagonism and Bio-inspired Control in a Printable Robot Arm

  • Conference paper
  • First Online:
From Animals to Animats 14 (SAB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Included in the following conference series:

Abstract

The human arm is capable of performing fast targeted movements with high precision, say in pointing with a mouse cursor, but is inherently ‘soft’ due to the muscles, tendons and other tissues of which it is composed. Robot arms are also becoming softer, to enable robustness when operating in real-world environments, and to make them safer to use around people. But softness comes at a price, typically an increase in the complexity of the control required for a given task speed/accuracy requirement. Here we explore how fast and precise joint movements can be simply and effectively performed in a soft robot arm, by taking inspiration from the human arm. First, viscoelastic actuator-tendon systems in an agonist-antagonist setup provide joints with inherent damping, and stiffness that can be varied in real-time through co-contraction. Second, a light-weight and learnable inverse model for each joint enables a fast ballistic phase that drives the arm close to a desired equilibrium point and co-contraction tuple, while the final adjustment is done by a feedback controller. The approach is embodied in the GummiArm, a robot which can almost entirely be printed on hobby-grade 3D printers. This enables rapid and iterative co-exploration of ‘brain’ and ‘body’, and provides a great platform for developing adaptive and bio-inspired behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flash, T.: The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57(4–5), 257–274 (1987)

    Article  MATH  Google Scholar 

  2. Kistemaker, D.A., Van Soest, A.K.J., Bobbert, M.F.: Is equilibrium point control feasible for fast goal-directed single-joint movements? J. Neurophysiol. 95(5), 2898–2912 (2006)

    Article  Google Scholar 

  3. Gribble, P.L., Mullin, L.I., Cothros, N., Mattar, A.: Role of cocontraction in arm movement accuracy. J. Neurophysiol. 89(5), 2396–2405 (2003)

    Article  Google Scholar 

  4. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends Cogn. Sci. 2(9), 338–347 (1998)

    Article  Google Scholar 

  5. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  6. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM 55(11), 76–87 (2012)

    Article  Google Scholar 

  7. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: “Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration Biomimetics 7(2), 025005 (2012)

    Article  Google Scholar 

  8. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 399–406 (1995)

    Google Scholar 

  9. Quigley, M., Asbeck, A., Ng, A.: A low-cost compliant 7-DOF robotic manipulator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6051–6058, May 2011

    Google Scholar 

  10. Vanderborght, B., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  11. Bicchi, A., Tonietti, G., Bavaro, M., Piccigallo, M.: Variable stiffness actuators for fast and safe motion control. In: Dario, P., Chatila, R. (eds.) The Eleventh International Symposium on Robotics Research. STAR, vol. 15, pp. 527–536. Springer, Heidelberg (2005)

    Google Scholar 

  12. Catalano, M.G., Grioli, G., Garabini, M., Bonomo, F., Mancini, M., Tsagarakis, N., Bicchi, A.: VSA-CubeBot: a modular variable stiffness platform for multiple degrees of freedom robots. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 5090–5095 (2011)

    Google Scholar 

  13. Grebenstein, M., et al.: The DLR hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3175–3182 (2011)

    Google Scholar 

  14. Petit, F., Dietrich, A., Albu-Schaffer, A.: Generalizing torque control concepts: using well-established torque control methods on variable stiffness robots. IEEE Robot. Autom. Mag. 22(4), 37–51 (2015)

    Article  Google Scholar 

  15. Radulescu, A., Howard, M., Braun, D.J., Vijayakumar, S.: Exploiting variable physical damping in rapid movement tasks. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 141–148 (2012)

    Google Scholar 

  16. Kashiri, N., Tsagarakis, N.G., Van Damme, M., Vanderborght, B., Caldwell, D.G.: Proxy-based sliding mode control of compliant joint manipulators. In: Filipe, J., Gusikhin, O., Madani, K., Sasiadek, J. (eds.) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol. 370, pp. 241–257. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  17. Cangelosi, A., Schlesinger, M.: Developmental Robotics: From Babies to Robots. MIT Press, Cambridge (2015)

    Google Scholar 

  18. Pfeifer, R., Marques, H.G., Iida, F.: Soft robotics: the next generation of intelligent machines. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 5–11 (2013)

    Google Scholar 

  19. Metta, G., Sandini, G., Vernon, D., Natale, L., Nori, F.: The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 50–56 (2008)

    Google Scholar 

  20. Petit, F., Ott, C., Albu-Schaffer, A.: A model-free approach to vibration suppression for intrinsically elastic robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2176–2182 (2014)

    Google Scholar 

  21. Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., et al.: Poppy Project: Open-Source Fabrication of 3D Printed Humanoid Robot for Science, Education and Art, Digital Intelligence 2014, September 2014, Nantes, France, p. 6 (2014). https://hal.inria.fr/hal-01096338

  22. NASA, Man-Systems Integration Standards - Revison B. National Aeronautics, Space Administration: Houston, USA (1995). http://msis.jsc.nasa.gov/

  23. Chou, C.P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Rob. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  24. Ham, R.V., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Compliant actuator designs. IEEE Rob. Autom. Mag. 16(3), 81–94 (2009)

    Article  Google Scholar 

  25. Hallett, M.A.R.K., Marsden, C.D.: Ballistic flexion movements of the human thumb. J. Physiol. 294, 33–50 (1979)

    Article  Google Scholar 

  26. Grioli, G., et al.: Variable stiffness actuators: the user’s point of view. Int. J. Rob. Res. 34(6), 727–743 (2015)

    Article  Google Scholar 

  27. Bruyninckx, H.: Open robot control software: the OROCOS project. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2523–2528 (2001)

    Google Scholar 

Download references

Acknowledgments

This work was funded by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme (DeCoRo FP7-PEOPLE-2013-IEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Stoelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stoelen, M.F., Bonsignorio, F., Cangelosi, A. (2016). Co-exploring Actuator Antagonism and Bio-inspired Control in a Printable Robot Arm. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics