Skip to main content

Approximation of Probabilistic Reachability for Chemical Reaction Networks Using the Linear Noise Approximation

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9826))

Included in the following conference series:

Abstract

We study time-bounded probabilistic reachability for Chemical Reaction Networks (CRNs) using the Linear Noise Approximation (LNA). The LNA approximates the discrete stochastic semantics of a CRN in terms of a continuous space Gaussian process. We consider reachability regions expressed as intersections of finitely many linear inequalities over the species of a CRN. This restriction allows us to derive an abstraction of the original Gaussian process as a time-inhomogeneous discrete-time Markov chain (DTMC), such that the dimensionality of its state space is independent of the number of species of the CRN, ameliorating the state space explosion problem. We formulate an algorithm for approximate computation of time-bounded reachability probabilities on the resulting DTMC and show how to extend it to more complex temporal properties. We implement the algorithm and demonstrate on two case studies that it permits fast and scalable computation of reachability properties with controlled accuracy.

This research is supported by a Royal Society Research Professorship and ERC AdG VERIWARE. LB is supported by EU-FET project QUANTICOL (nr 600708).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Gaussian process obtained by linear noise approximation is Markov, as it is the solution of a linear Fokker-Planck equation (stochastic differential equation) [25].

References

  1. Anderson, D.F., Kurtz, T.G.: Continuous time Markov chain models for chemical reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.) Design and Analysis of Biomolecular Circuits, pp. 3–42. Springer, New York (2011)

    Chapter  Google Scholar 

  2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic (TOCL) 1(1), 162–170 (2000)

    Article  MathSciNet  Google Scholar 

  4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of probability measures. Wiley, Hoboken (1999)

    Book  MATH  Google Scholar 

  6. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability probabilities of Markov population models. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp. 224–239. Springer, Heidelberg (2014)

    Google Scholar 

  9. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Information and Computation (2016)

    Google Scholar 

  10. Bujorianu, L.M.: Stochastic Reachability Analysis of Hybrid Systems. Springer, London (2012)

    Book  MATH  Google Scholar 

  11. Cardelli, L.: On process rate semantics. Theoret. Comput. Sci. 391(3), 190–215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  13. Csikász-Nagy, A., Cardelli, L., Soyer, O.S.: Response dynamics of phosphorelays suggest their potential utility in cell signalling. J. R. Soc. Interface 8(57), 480–488 (2011)

    Article  Google Scholar 

  14. Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature 467(7312), 167–173 (2010)

    Article  Google Scholar 

  15. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, New York (2009)

    MATH  Google Scholar 

  16. Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297(5584), 1129–1131 (2002)

    Article  Google Scholar 

  17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  18. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A Stat. Mech. Appl. 188(1), 404–425 (1992)

    Article  MathSciNet  Google Scholar 

  19. Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)

    Article  Google Scholar 

  20. Grima, R.: Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys. Rev. E 92(4), 042–124 (2015)

    Article  Google Scholar 

  21. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044–104 (2006)

    Article  MATH  Google Scholar 

  24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science 1977, pp. 46–57. IEEE (1977)

    Google Scholar 

  25. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  26. Wallace, E., Gillespie, D., Sanft, K., Petzold, L.: Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6(4), 102–115 (2012)

    Article  Google Scholar 

  27. Wolf, V., Goel, R., Mateescu, M., Henzinger, T.A.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4(1), 1 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Laurenti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bortolussi, L., Cardelli, L., Kwiatkowska, M., Laurenti, L. (2016). Approximation of Probabilistic Reachability for Chemical Reaction Networks Using the Linear Noise Approximation. In: Agha, G., Van Houdt, B. (eds) Quantitative Evaluation of Systems. QEST 2016. Lecture Notes in Computer Science(), vol 9826. Springer, Cham. https://doi.org/10.1007/978-3-319-43425-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43425-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43424-7

  • Online ISBN: 978-3-319-43425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics