Skip to main content

The Role of CMV in Immunosenescence

  • Chapter
  • First Online:
The Ageing Immune System and Health

Abstract

The term “immunosenescence” is commonly taken to mean age-associated changes in immune parameters hypothesized to contribute to increased susceptibility and severity of the older adult to infectious disease, autoimmunity and cancer. In humans, it is characterized by lower numbers and frequencies of naïve T and B cells and higher numbers and frequencies of late-differentiated T cells, especially CD8+ T cells, in the peripheral blood. The latter may be very noticeable, but intriguingly, only in people infected by human herpesvirus 5 (Cytomegalovirus, CMV). Almost all human studies have been cross-sectional, thus documenting differences between old and young populations, but not necessarily changes over time. Nonetheless, limited longitudinal studies have provided data consistent with gradually decreasing naïve T and B cells, and increasing late-differentiated T cells over time, and in rare instances associating these changes with increasing frailty and incipient mortality in the elderly. Low numbers of naïve cells render the aged highly susceptible to pathogens to which they have not been previously exposed, but are not otherwise associated with an “immune risk profile” predicting earlier mortality. Whether the accumulations of late-differentiated T cells driven primarily by CMV contribute to frailty and mortality or are only adaptive responses to the persistent virus remains controversial. Either way, there is currently little direct evidence that “immunosenescence” contributes to either autoimmunity or cancer in the aged. This chapter reviews some of the studies implicating CMV infection in immunosenescence and its consequences for ageing trajectories in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCR7:

Chemokine receptor 7

CMV:

Cytomegalovirus

DC:

Dendritic cell

γδ T cells:

Gamma-delta T cells

IE-1:

Immediate early protein 1

IFN:

Interferon

KLRG:

Killer lectin-like cell receptor G1

MHC:

Major histocompatibility complex

NK cell:

Natural killer cell

PBMC:

Peripheral blood mononuclear cells

pp65:

Tegument protein

TLR:

Toll-like receptor

References

  1. Müller L, Pawelec G. As we age: does slippage of quality control in the immune system lead to collateral damage? Ageing Res Rev. 2015;23(Pt A):116–23.

    Article  PubMed  Google Scholar 

  2. Pawelec G. Immunosenescence: role of cytomegalovirus. Exp Gerontol. 2014;54:1–5.

    Article  CAS  PubMed  Google Scholar 

  3. Fülöp T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immunol Ageing. 2012;9(1):15.

    Article  CAS  Google Scholar 

  5. Arens R, Remmerswaal EB, Bosch JA, van Lier RA. 5(th) International Workshop on CMV and Immunosenescence—a shadow of cytomegalovirus infection on immunological memory. Eur J Immunol. 2015;45(4):954–7.

    Article  CAS  PubMed  Google Scholar 

  6. Meijers RW, Litjens NH, Hesselink DA, Langerak AW, Baan CC, Betjes MG. Primary cytomegalovirus infection significantly impacts circulating T cells in kidney transplant recipients. Am J Transplant. 2015;15(12):3143–56.

    Article  CAS  PubMed  Google Scholar 

  7. Miles DJ, van der Sande M, Jeffries D, Kaye S, Ismaili J, Ojuola O, et al. Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J Virol. 2007;81(11):5766–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dowd JB, Aiello AE, Alley DE. Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect. 2009;137(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  9. Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses. 2014;6(3):1049–72.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boeckh M, Geballe AP. Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest. 2011;121(5):1673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanley PJ, Bollard CM. Controlling cytomegalovirus: helping the immune system take the lead. Viruses. 2014;6(6):2242–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol. 2008;325:417–70.

    CAS  PubMed  Google Scholar 

  13. Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev. 2015;pii:S0047-6374(15)30014-2.

    Google Scholar 

  14. Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu YL, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.

    Article  PubMed  Google Scholar 

  15. Kalejta RF. Tegument proteins of human cytomegalovirus. Microbiol Mol Biol Rev. 2008;72(2):249–65. table of contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nachmani D, Lankry D, Wolf DG, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol. 2010;11(9):806–13.

    Article  CAS  PubMed  Google Scholar 

  17. Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod‘homme V, Aicheler R, et al. Modulation of natural killer cells by human cytomegalovirus. J Clin Virol. 2008;41(3):206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A. Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol. 2009;83(19):9618–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beisser PS, Lavreysen H, Bruggeman CA, Vink C. Chemokines and chemokine receptors encoded by cytomegaloviruses. Curr Top Microbiol Immunol. 2008;325:221–42.

    CAS  PubMed  Google Scholar 

  20. McCormick AL. Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol. 2008;325:281–95.

    CAS  PubMed  Google Scholar 

  21. Reeves M, Sinclair J. Aspects of human cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol. 2008;325:297–313.

    CAS  PubMed  Google Scholar 

  22. Reeves M, Sinclair J. Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter. Viruses. 2013;5(6):1395–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee SH, Albright ER, Lee JH, Jacobs D, Kalejta RF. Cellular defense against latent colonization foiled by human cytomegalovirus UL138 protein. Sci Adv. 2015;1(10), e1501164.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Poole E, Sinclair J. Sleepless latency of human cytomegalovirus. Med Microbiol Immunol. 2015;204(3):421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu XF, Wang X, Yan S, Zhang Z, Abecassis M, Hummel M. Epigenetic control of cytomegalovirus latency and reactivation. Viruses. 2013;5(5):1325–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goodrum F, Caviness K, Zagallo P. Human cytomegalovirus persistence. Cell Microbiol. 2012;14(5):644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Derhovanessian E, Maier AB, Beck R, Jahn G, Hahnel K, Slagboom PE, et al. Hallmark features of immunosenescence are absent in familial longevity. J Immunol. 2010;185(8):4618–24.

    Article  CAS  PubMed  Google Scholar 

  28. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol. 2003;170(4):2022–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kim J, Kim AR, Shin EC. Cytomegalovirus Infection and Memory T Cell Inflation. Immune Netw. 2015;15(4):186–90.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, et al. Age-associated accumulation of CMV-specific CD8+ T cells expressing the inhibitory killer cell lectin-like receptor G1 (KLRG1). Exp Gerontol. 2003;38(8):911–20.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson SE, Mason GM, Okecha G, Sissons JG, Wills MR. Diverse specificities, phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol. 2014;88(18):10894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gibson L, Dooley S, Trzmielina S, Somasundaran M, Fisher D, Revello MG, et al. Cytomegalovirus (CMV) IE1- and pp 65-specific CD8+ T cell responses broaden over time after primary CMV infection in infants. J Infect Dis. 2007;195(12):1789–98.

    Article  CAS  PubMed  Google Scholar 

  33. Vieira Braga FA, Hertoghs KM, van Lier RA, van Gisbergen KP. Molecular characterization of HCMV-specific immune responses: Parallels between CD8(+) T cells, CD4(+) T cells, and NK cells. Eur J Immunol. 2015;45(9):2433–45.

    Article  CAS  PubMed  Google Scholar 

  34. Stowe RP, Kozlova EV, Yetman DL, Walling DM, Goodwin JS, Glaser R. Chronic herpesvirus reactivation occurs in aging. Exp Gerontol. 2007;42(6):563–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beswick M, Pachnio A, Lauder SN, Sweet C, Moss PA. Antiviral therapy can reverse the development of immune senescence in elderly mice with latent cytomegalovirus infection. J Virol. 2013;87(2):779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog. 2012;8(8), e1002850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pachnio A, Begum J, Fox A, Moss P. Acyclovir therapy reduces the CD4+ T cell response against the immunodominant pp 65 protein from cytomegalovirus in immune competent individuals. PLoS One. 2015;10(4), e0125287.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, et al. Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 70 years. Immunol Ageing. 2016;13:1.

    Article  Google Scholar 

  39. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A. Cytomegalovirus and human immunosenescence. Rev Med Virol. 2009;19(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  41. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E. The impact of CMV infection on survival in older humans. Curr Opin Immunol. 2012;24(4):507–11.

    Article  CAS  PubMed  Google Scholar 

  42. Pawelec G, Derhovanessian E. Role of CMV in immune senescence. Virus Res. 2011;157(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  43. Adriaensen W, Derhovanessian E, Vaes B, Van Pottelbergh G, Degryse JM, Pawelec G, et al. CD4:8 ratio >5 is associated with a dominant naive T-cell phenotype and impaired physical functioning in CMV-seropositive very elderly people: results from the BELFRAIL study. J Gerontol A Biol Sci Med Sci. 2015;70(2):143–54.

    Article  PubMed  Google Scholar 

  44. Pera A, Campos C, Corona A, Sanchez-Correa B, Tarazona R, Larbi A, et al. CMV latent infection improves CD8+ T response to SEB due to expansion of polyfunctional CD57+ cells in young individuals. PLoS One. 2014;9(2), e88538.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Furman D, Jojic V, Sharma S, Shen-Orr SS, Angel CJ, Onengut-Gumuscu S, et al. Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med. 2015;7(281):281ra43.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. 2007;447(7142):326–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C, Pulko V, et al. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol. 2014;192(5):2143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Turner JE, Campbell JP, Edwards KM, Howarth LJ, Pawelec G, Aldred S, et al. Rudimentary signs of immunosenescence in Cytomegalovirus-seropositive healthy young adults. Age (Dordr). 2014;36(1):287–97.

    Article  CAS  Google Scholar 

  49. Gamadia LE, van Leeuwen EM, Remmerswaal EB, Yong SL, Surachno S, Wertheim-van Dillen PM, et al. The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol. 2004;172(10):6107–14.

    Article  CAS  PubMed  Google Scholar 

  50. Redeker A, Welten SP, Arens R. Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol. 2014;44(4):1046–57.

    Article  CAS  PubMed  Google Scholar 

  51. O‘Hara GA, Welten SP, Klenerman P, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 2012;33(2):84–90.

    Article  PubMed  Google Scholar 

  52. Terrazzini N, Bajwa M, Vita S, Thomas D, Smith H, Vescovini R, et al. Cytomegalovirus infection modulates the phenotype and functional profile of the T-cell immune response to mycobacterial antigens in older life. Exp Gerontol. 2014;54:94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McElhaney JE, Zhou X, Talbot HK, Soethout E, Bleackley RC, Granville DJ, et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine. 2012;30(12):2060–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Riddell NE, Griffiths SJ, Rivino L, King DC, Teo GH, Henson SM, et al. Multifunctional cytomegalovirus (CMV)-specific CD8(+) T cells are not restricted by telomere-related senescence in young or old adults. Immunology. 2015;144(4):549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roux A, Mourin G, Larsen M, Fastenackels S, Urrutia A, Gorochov G, et al. Differential impact of age and cytomegalovirus infection on the gammadelta T cell compartment. J Immunol. 2013;191(3):1300–6.

    Article  CAS  PubMed  Google Scholar 

  56. Alejenef A, Pachnio A, Halawi M, Christmas SE, Moss PA, Khan N. Cytomegalovirus drives Vdelta2neg gammadelta T cell inflation in many healthy virus carriers with increasing age. Clin Exp Immunol. 2014;176(3):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160(1-2):37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas. 2015;82(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  59. Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, et al. Cytomegalovirus infection is associated with increased mortality in the older population. Aging Cell. 2013;12(3):381–7.

    Article  CAS  PubMed  Google Scholar 

  60. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, et al. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci. 2005;60(5):556–65.

    Article  PubMed  Google Scholar 

  61. Spyridopoulos I, Martin-Ruiz C, Hilkens C, Yadegarfar ME, Isaacs J, Jagger C, et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell. 2015.

    Google Scholar 

  62. Moro-Garcia MA, Alonso-Arias R, Lopez-Vazquez A, Suarez-Garcia FM, Solano-Jaurrieta JJ, Baltar J, et al. Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age (Dordr). 2012;34(2):479–95.

    Article  CAS  Google Scholar 

  63. Simanek AM, Dowd JB, Pawelec G, Melzer D, Dutta A, Aiello AE. Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related mortality in the United States. PLoS One. 2011;6(2), e16103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Terrazzini N, Bajwa M, Vita S, Cheek E, Thomas D, Seddiki N, et al. A novel cytomegalovirus-induced regulatory-type T-cell subset increases in size during older life and links virus-specific immunity to vascular pathology. J Infect Dis. 2014;209(9):1382–92.

    Article  CAS  PubMed  Google Scholar 

  65. Wall NA, Chue CD, Edwards NC, Pankhurst T, Harper L, Steeds RP, et al. Cytomegalovirus seropositivity is associated with increased arterial stiffness in patients with chronic kidney disease. PLoS One. 2013;8(2), e55686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gow AJ, Firth CM, Harrison R, Starr JM, Moss P, Deary IJ. Cytomegalovirus infection and cognitive abilities in old age. Neurobiol Aging. 2013;34(7):1846–52.

    Article  PubMed  Google Scholar 

  67. Rahbar A, Orrego A, Peredo I, Dzabic M, Wolmer-Solberg N, Straat K, et al. Human cytomegalovirus infection levels in glioblastoma multiforme are of prognostic value for survival. J Clin Virol. 2013;57(1):36–42.

    Article  PubMed  Google Scholar 

  68. Wolmer-Solberg N, Baryawno N, Rahbar A, Fuchs D, Odeberg J, Taher C, et al. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer. 2013;133(10):2351–61.

    Article  CAS  PubMed  Google Scholar 

  69. Stragliotto G, Rahbar A, Solberg NW, Lilja A, Taher C, Orrego A, et al. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer. 2013;133(5):1204–13.

    Article  CAS  PubMed  Google Scholar 

  70. Frasca D, Blomberg BB. Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum Vaccin Immunother. 2015;12(3):682–90.

    Article  Google Scholar 

  71. Derhovanessian E, Maier AB, Hahnel K, McElhaney JE, Slagboom EP, Pawelec G. Latent infection with cytomegalovirus is associated with poor memory CD4 responses to influenza A core proteins in the elderly. J Immunol. 2014;193(7):3624–31.

    Article  CAS  PubMed  Google Scholar 

  72. Derhovanessian E, Theeten H, Hahnel K, Van Damme P, Cools N, Pawelec G. Cytomegalovirus-associated accumulation of late-differentiated CD4 T-cells correlates with poor humoral response to influenza vaccination. Vaccine. 2013;31(4):685–90.

    Article  CAS  PubMed  Google Scholar 

  73. Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, et al. Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination—an impact of immunosenescence. Vaccine. 2003;21(25-26):3826–36.

    Article  CAS  PubMed  Google Scholar 

  74. Kim TS, Sun J, Braciale TJ. T cell responses during influenza infection: getting and keeping control. Trends Immunol. 2011;32(5):225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Commission under Grant Agreement FP7 259679, Integrated research on developmental determinants of ageing and longevity, “IDEAL” and by an unrestricted educational grant from the Croeni Foundation (to GP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Pawelec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, L., Hamprecht, K., Pawelec, G. (2017). The Role of CMV in Immunosenescence. In: Bueno, V., Lord, J., Jackson, T. (eds) The Ageing Immune System and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-43365-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43365-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43363-9

  • Online ISBN: 978-3-319-43365-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics