Skip to main content

p53 Replacement Therapy for Cancer

  • Chapter
  • First Online:
Current Strategies in Cancer Gene Therapy

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 209))

Abstract

Tumor suppressor gene (TSG) replacement therapy that involves various delivery systems is emerging as a promising antitumor strategy because malignant tumors develop through genetic alterations in TSGs. The most potent therapeutic TSG for tumor suppression is the multifunctional transcription factor p53 gene that regulates diverse cellular phenomena such as cell cycle arrest, senescence, apoptosis, and autophagy. Since the p53 gene is frequently inactivated by aberrant genetic regulation in human cancers, p53 replacement therapy is widely and frequently used as a potent antitumor strategy to restore wild-type p53 function in the p53-inactivated tumors. This chapter focuses on four types of p53 transfer systems: cationic liposome–DNA plasmid complexes, a replication-deficient adenovirus vector, a replication-competent adenovirus vector, and a protein transduction system. Moreover, we discuss recent advances in our understanding of the molecular basis of the p53-mediated cell death signaling pathway and therapeutic methods for enhancing tumor cell death and induction of bystander effects within tumor tissues in p53 replacement therapy. Exploration of the molecular mechanism underlying the p53-mediated tumor-suppressive network system and development of an effective strategy for enhancing p53-mediated cell death signaling pathways would lead to an improvement in the clinical outcome of patients with p53-inactivated cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TSG:

Tumor suppressor gene

MDM2:

Mouse double minute 2

DRAM:

Damage-regulated autophagy modulator

hTERT:

human telomerase reverse transcriptase

CAR:

Coxsackie and adenovirus receptors

DCs:

Dendritic cells

References

  • Barak Y, Juven T, Haffner R, Oren M (1993) mdm2 expression is induced by wild type p53 activity. EMBO J 12(2):461–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CD, Fang B, Lee JJ, Roth JA (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 58(11):2288–2292

    CAS  PubMed  Google Scholar 

  • Bykov VJ, Wiman KG (2014) Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 588(16):2622–2627

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG, Selivanova G (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8(3):282–288

    Article  CAS  PubMed  Google Scholar 

  • Carroll JL, Nielsen LL, Pruett SB, Mathis JM (2001) The role of natural killer cells in adenovirus-mediated p53 gene therapy. Mol Cancer Ther 1(1):49–60

    CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825

    Google Scholar 

  • Fang B, Roth JA (2003) Tumor-suppressing gene therapy. Cancer Biol Ther 2(4 Suppl 1):S115–S121

    CAS  PubMed  Google Scholar 

  • Feng B, Tomizawa K, Michiue H, Miyatake S, Han XJ, Fujimura A, Seno M, Kirihata M, Matsui H (2009) Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 30(9):1746–1755

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Tomizawa K, Michiue H, Han XJ, Miyatake S, Matsui H (2010) Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo. Biomaterials 31(14):4139–4145

    Article  CAS  PubMed  Google Scholar 

  • Frank DK, Frederick MJ, Liu TJ, Clayman GL (1998) Bystander effect in the adenovirus-mediated wild-type p53 gene therapy model of human squamous cell carcinoma of the head and neck. Clin Cancer Res 4(10):2521–2528

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Urata Y, Tanaka N (2007) Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Curr Cancer Drug Targets 7(2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Daido S, Yamamoto A, Kobayashi R, Yokoyama T, Aoki H, Iwado E, Shinojima N, Kondo Y, Kondo S (2008) Pivotal role of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 in apoptosis and autophagy. J Biol Chem 283(1):388–397

    Article  CAS  PubMed  Google Scholar 

  • Fukazawa T, Fujiwara T, Morimoto Y, Shao J, Nishizaki M, Kadowaki Y, Hizuta A, Owen-Schaub LB, Roth JA, Tanaka N (1999) Differential involvement of the CD95 (Fas/APO-1) receptor/ligand system on apoptosis induced by the wild-type p53 gene transfer in human cancer cells. Oncogene 18(13):2189–2199

    Article  CAS  PubMed  Google Scholar 

  • Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14(8):929–935

    Article  CAS  PubMed  Google Scholar 

  • Graat HC, Carette JE, Schagen FH, Vassilev LT, Gerritsen WR, Kaspers GJ, Wuisman PI, van Beusechem VW (2007) Enhanced tumor cell kill by combined treatment with a small-molecule antagonist of mouse double minute 2 and adenoviruses encoding p53. Mol Cancer Ther 6(5):1552–1561

    Article  CAS  PubMed  Google Scholar 

  • Hasei J, Sasaki T, Tazawa H, Osaki S, Yamakawa Y, Kunisada T, Yoshida A, Hashimoto Y, Onishi T, Uno F, Kagawa S, Urata Y, Ozaki T, Fujiwara T (2013) Dual programmed cell death pathways induced by p53 transactivation overcome resistance to oncolytic adenovirus in human osteosarcoma cells. Mol Cancer Ther 12(3):314–325

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Watanabe Y, Shirakiya Y, Uno F, Kagawa S, Kawamura H, Nagai K, Tanaka N, Kumon H, Urata Y, Fujiwara T (2008) Establishment of biological and pharmacokinetic assays of telomerase-specific replication-selective adenovirus. Cancer Sci 99(2):385–390

    Article  CAS  PubMed  Google Scholar 

  • Hitsuda T, Michiue H, Kitamatsu M, Fujimura A, Wang F, Yamamoto T, Han XJ, Tazawa H, Uneda A, Ohmori I, Nishiki T, Tomizawa K, Matsui H (2012) A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Biomaterials 33(18):4665–4672

    Article  CAS  PubMed  Google Scholar 

  • Idogawa M, Sasaki Y, Suzuki H, Mita H, Imai K, Shinomura Y, Tokino T (2009) A single recombinant adenovirus expressing p53 and p21-targeting artificial microRNAs efficiently induces apoptosis in human cancer cells. Clin Cancer Res 15(11):3725–3732

    Article  CAS  PubMed  Google Scholar 

  • Itoshima T, Fujiwara T, Waku T, Shao J, Kataoka M, Yarbrough WG, Liu TJ, Roth JA, Tanaka N, Kodama M (2000) Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type p53 and E2F-1 genes: involvement of p53 accumulation via ARF-mediated MDM2 down-regulation. Clin Cancer Res 6(7):2851–2859

    CAS  PubMed  Google Scholar 

  • Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Teraishi F, Taki M, Kyo S, Tanaka N, Fujiwara T (2004) Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10(1 Pt 1):285–292

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mao Y, Rosal RV, Dinnen RD, Williams AC, Brandt-Rauf PW, Fine RL (2005) Selective induction of apoptosis through the FADD/caspase-8 pathway by a p53 c-terminal peptide in human pre-malignant and malignant cells. Int J Cancer 115(1):55–64

    Article  CAS  PubMed  Google Scholar 

  • Michiue H, Tomizawa K, Matsushita M, Tamiya T, Lu YF, Ichikawa T, Date I, Matsui H (2005) Ubiquitination-resistant p53 protein transduction therapy facilitates anti-cancer effect on the growth of human malignant glioma cells. FEBS Lett 579(18):3965–3969

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Tokunaga N, Waku T, Gomi S, Kagawa S, Tanaka N, Fujiwara T (2004) Antitumor effect of intratumoral administration of bone marrow-derived dendritic cells transduced with wild-type p53 gene. Clin Cancer Res 10(11):3871–3880

    Article  CAS  PubMed  Google Scholar 

  • Najafi M, Fardid R, Hadadi G, Fardid M (2014) The mechanisms of radiation-induced bystander effect. J Biomed Phys Eng 4(4):163–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakase M, Inui M, Okumura K, Kamei T, Nakamura S, Tagawa T (2005) p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol Cancer Ther 4(4):625–631

    Article  CAS  PubMed  Google Scholar 

  • Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke AP, Bedell C, Adams N, Zhang YA, Maples PB, Chen S, Pappen B, Burke J, Ichimaru D, Urata Y, Fujiwara T (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18(2):429–434

    Article  CAS  PubMed  Google Scholar 

  • Nishizaki M, Fujiwara T, Tanida T, Hizuta A, Nishimori H, Tokino T, Nakamura Y, Bouvet M, Roth JA, Tanaka N (1999) Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res 5(5):1015–1023

    CAS  PubMed  Google Scholar 

  • Nishizaki M, Meyn RE, Levy LB, Atkinson EN, White RA, Roth JA, Ji L (2001) Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clin Cancer Res 7(9):2887–2897

    CAS  PubMed  Google Scholar 

  • Ognjanovic S, Olivier M, Bergemann TL, Hainaut P (2012) Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer 118(5):1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19(6):607–614

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramesh R, Saeki T, Templeton NS, Ji L, Stephens LC, Ito I, Wilson DR, Wu Z, Branch CD, Minna JD, Roth JA (2001) Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector. Mol Ther 3(3):337–350

    Article  CAS  PubMed  Google Scholar 

  • Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89(1):21–39

    Article  CAS  PubMed  Google Scholar 

  • Roth JA, Swisher SG, Meyn RE (1999) p53 tumor suppressor gene therapy for cancer. Oncology (Williston Park) 13(10 Suppl 5):148–154

    CAS  Google Scholar 

  • Sakai R, Kagawa S, Yamasaki Y, Kojima T, Uno F, Hashimoto Y, Watanabe Y, Urata Y, Tanaka N, Fujiwara T (2010) Preclinical evaluation of differentially targeting dual virotherapy for human solid cancer. Mol Cancer Ther 9(6):1884–1893

    Article  CAS  PubMed  Google Scholar 

  • Selivanova G (2014) Wild type p53 reactivation: from lab bench to clinic. FEBS Lett 588(16):2628–2638

    Article  CAS  PubMed  Google Scholar 

  • Takenobu T, Tomizawa K, Matsushita M, Li ST, Moriwaki A, Lu YF, Matsui H (2002) Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther 1(12):1043–1049

    CAS  PubMed  Google Scholar 

  • Tango Y, Fujiwara T, Itoshima T, Takata Y, Katsuda K, Uno F, Ohtani S, Tani T, Roth JA, Tanaka N (2002) Adenovirus-mediated p14ARF gene transfer cooperates with Ad5CMV-p53 to induce apoptosis in human cancer cells. Hum Gene Ther 13(11):1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H, Kagawa S, Fujiwara T (2013) Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther 13(11):1569–1583

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Wei FY, Hide T, Michiue H, Takayama K, Kaitsuka T, Nakamura H, Makino K, Kuratsu J, Futaki S, Tomizawa K (2012) Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 33(35):9061–9069

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  CAS  PubMed  Google Scholar 

  • Waku T, Fujiwara T, Shao J, Itoshima T, Murakami T, Kataoka M, Gomi S, Roth JA, Tanaka N (2000) Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. J Immunol 165(10):5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Pirollo KF, Chang EH (1997) Transferrin-liposome-mediated p53 sensitization of squamous cell carcinoma of the head and neck to radiation in vitro. Hum Gene Ther 8(4):467–475. doi:10.1089/hum.1997.8.4-467

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Tang WH, Huang CC, Alexander W, Xiang LM, Pirollo KF, Rait A, Chang EH (2001) Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 7(10):723–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Huang CC, Huang W, Tang WH, Rait A, Yin YZ, Cruz I, Xiang LM, Pirollo KF, Chang EH (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1(5):337–346

    CAS  PubMed  Google Scholar 

  • Yamasaki Y, Tazawa H, Hashimoto Y, Kojima T, Kuroda S, Yano S, Yoshida R, Uno F, Mizuguchi H, Ohtsuru A, Urata Y, Kagawa S, Fujiwara T (2012) A novel apoptotic mechanism of genetically engineered adenovirus-mediated tumour-specific p53 overexpression through E1A-dependent p21 and MDM2 suppression. Eur J Cancer 48(14):2282–2291

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Zong G, Ling YH, Hao MM, Lozano G, Hong WK, Perez-Soler R (1998) Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst 90(15):1130–1137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Health, Labour, and Welfare of Japan and from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyoshi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tazawa, H., Kagawa, S., Fujiwara, T. (2016). p53 Replacement Therapy for Cancer. In: Walther, W. (eds) Current Strategies in Cancer Gene Therapy. Recent Results in Cancer Research, vol 209. Springer, Cham. https://doi.org/10.1007/978-3-319-42934-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42934-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42932-8

  • Online ISBN: 978-3-319-42934-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics