Skip to main content

Initial Resuscitation and Management of the Hemodynamically Unstable Patient

  • Chapter
  • First Online:
Common Problems in Acute Care Surgery

Abstract

Resuscitation during ongoing hemorrhagic shock restores physiologic balance by achieving control of hemorrhage and providing fluid and blood products, titrated to laboratory and clinical parameters. Phases of resuscitation occur in the pre-hospital environment, emergency room, operating room, interventional radiology suite, and intensive care unit (ICU) where multiple health care providers and physicians influence patient outcome by their attentiveness and diligence to this careful art.

The patient’s clinical picture is dynamic, in constant flux, requiring continuous attention to the details of the resuscitation. While profound hemorrhagic shock is easily recognized and its source targeted with haste, it is difficult to gain control of bleeding with meaningful outcome once cardiopulmonary collapse has occurred. Subtle signs of impending hemorrhagic shock often go unnoticed or unrecognized, but shock can be reversible when identified early in relation to the timing of the traumatic event. Coagulopathy must be prevented or corrected and temperature optimized in conjunction with source control. It is often not until entering the emergency department that patients receive the first unit of blood or blood product, and it generally is not until reaching the operating room or interventional radiology suite that effective control of bleeding is achieved. Many centers are pushing blood products to the pre-hospital area, and adjuncts for earlier truncal hemorrhage control will occur within the next several years.

Hemorrhagic shock correlates to a source of bleeding. Coagulopathy, acidosis, and hypothermia wreak havoc on metabolic processes and physiologic responses during the perioperative period. In the operating theater, surgeons frequently focus on operative management, while decisions regarding transfusion, colloid, and crystalloid administration are made by the anesthesiologist. Improved communication between these two specialties is essential to optimize patient outcomes. During damage control operations, bleeding is quickly controlled in preparation for further resuscitation in the ICU. Once in the ICU, serial laboratory values, continued resuscitation, and correction of the acidosis, hypothermia, and coagulopathy continue until the patient shows signs of stabilization, returns emergently to the operating room or interventional suite, or succumbs to death. This chapter outlines the general principles of resuscitation and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiggers HC, Ingraham RC. Hemorrhagic shock: definition and criteria for its diagnosis. J Clin Invest. 1946;25(1):30–6.

    Article  PubMed Central  Google Scholar 

  2. American College of Surgeons. ATLS manual. 7th ed. Chicago, IL: American College of Surgeons; 2004.

    Google Scholar 

  3. Newgard CD, Zive D, Malveau S, Leopold R, Worrall W, Sahni R. Developing a statewide emergency medical services database linked to hospital outcomes: a feasibility study. Prehosp Emerg Care. 2011;15(3):303–19.

    Article  PubMed  Google Scholar 

  4. McGillicuddy DC, O’Connell FJ, Shapiro NI, Calder SA, Mottley LJ, Roberts JC, Sanchez LD. Emergency department abnormal vital sign “triggers” program improves time to therapy. Acad Emerg Med. 2011;18(5):483–7.

    Article  PubMed  Google Scholar 

  5. Mears G, Glickman SW, Moore F, Cairns CB. Data based integration of critical illness and injury patient care from EMS to emergency department to intensive care unit. Curr Opin Crit Care. 2009;15(4):284–9.

    Article  PubMed  Google Scholar 

  6. Holcomb JB, Donathan DP, Cotton BA, Del Junco DJ, Brown G, Wenckstern TV, Podbielski JM, Camp EA, Hobbs R, Bai Y, Brito M, Hartwell E, Duke JR, Wade CE. Prehospital transfusion of plasma and red blood cells in trauma patients. Prehosp Emerg Care. 2015;19(1):1–9.

    Article  PubMed  Google Scholar 

  7. Reynolds PS, Michael MJ, Cochran ED, Wegelin JA, Spiess BD. Prehospital use of plasma in traumatic hemorrhage (The PUPTH Trial): study protocol for a randomised controlled trial. Trials. 2015;16(1):321.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weaver AE, Hunter-Dunn C, Lyon RM, Lockey D, Krogh CL. The effectiveness of a ‘Code Red’ transfusion request policy initiated by pre-hospital physicians. Injury. 2015;S0020-1383(15)00351-4.

    Google Scholar 

  9. Beekley AC, Sebesta JA, Blackbourne LH, Herbert GS, Kauvar DS, Baer DG, Walters TJ, Mullenix PS, Holcomb JB, 31st Combat Support Hospital Research Group. Prehospital tourniquet use in Operation Iraqi Freedom: effect on hemorrhage control and outcomes. J Trauma. 2008;64 Suppl 2:S28–37. Discussion S37.

    Google Scholar 

  10. Kragh JF, O’Neill ML, Beebe DF, Fox CJ, Beekley AC, Cain JS, Parsons DL, Mabry RL, Blackbourne LH. Survey of the indications for use of emergency tourniquets. J Spec Oper Med. 2011;11(1):30–8.

    PubMed  Google Scholar 

  11. Taylor DM, Vater GM, Parker PJ. An evaluation of two tourniquet systems for the control of prehospital lower limb hemorrhage. J Trauma. 2011;71(3):591–5.

    Article  PubMed  Google Scholar 

  12. Peck MA, Clouse WD, Cox MW, Bowser AN, Eliason JL, Jenkins DH, Smith DL, Rasmussen TE. The complete management of extremity vascular injury in a local population: a wartime report from the 332nd Expeditionary Medical Group/Air Force Theater Hospital, Balad Air Base, Iraq. J Vasc Surg. 2007;45(6):1197–204. Discussion 1204–5.

    Article  PubMed  Google Scholar 

  13. Barbosa RR, Rowell SE, Diggs BS, Schreiber MA, Trauma Outcomes Group, et al. Profoundly abnormal initial physiologic and biochemical data cannot be used to determine futility in massively transfused trauma patients. J Trauma. 2011;71(2 Suppl 3):S364–9.

    Google Scholar 

  14. Barbosa RR, Rowell SE, Sambasivan CN, Diggs BS, Spinella PC, Schreiber MA, Trauma Outcomes Group, et al. A predictive model for mortality in massively transfused trauma patients. J Trauma. 2011;71(2 Suppl 3):S370–4.

    Article  PubMed  Google Scholar 

  15. Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66(2):346–52.

    Article  PubMed  Google Scholar 

  16. Cotton BA, Faz G, Hatch QM, Radwan ZA, Podbielski J, Wade C, Kozar RA, Holcomb JB. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71(2):407–14. Discussion 414–7.

    Article  PubMed  Google Scholar 

  17. Johansson PI, Stensballe J, Oliveri R, Wade CE, Ostrowski SR, Holcomb JB. How I treat patients with massive hemorrhage. Blood. 2014;124(20):3052–8.

    Article  CAS  PubMed  Google Scholar 

  18. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63:805–13.

    Article  PubMed  Google Scholar 

  19. Holcomb JB, Wade CE, Michalek JE, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248:447–58.

    PubMed  Google Scholar 

  20. Stansbury LG, Dutton RP, Stein DM, Bochicchio GV, Scalea TM, Hess JR. Controversy in trauma resuscitation: do ratios of plasma to red blood cells matter? Transfus Med Rev. 2009;23(4):255–65.

    Article  PubMed  Google Scholar 

  21. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs. a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.

    Google Scholar 

  22. Kashuk JL, Moore EE, Sawyer M, Le T, Johnson J, Biffl WL, Cothren CC, Barnett C, Stahel P, Sillman CC, Sauaia A, Banerjee A. Postinjury coagulopathy management: goal directed resuscitation via POC thrombelastography. Ann Surg. 2010;251(4):604–14.

    Article  PubMed  Google Scholar 

  23. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ho AM, Holcomb JB, Ng CS, Zamora JE, Karmakar MK, Dion PW. The traditional vs “1:1:1” approach debate on massive transfusion in trauma should not be treated as a dichotomy. Am J Emerg Med. 2015;33(10):1501–4.

    Google Scholar 

  25. Soller B, Zou F, Dale Prince M, Dubick MA, Sondeen JL. 2014 Military supplement: comparison of noninvasive pH and blood lactate as predictors of mortality in a swine hemorrhagic shock with restricted volume resuscitation model. Shock. 2015;44(1):90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmidt BM, Rezende-Neto JB, Andrade MV, Winter PC, Carvalho Jr MG, Lisboa TA, Rizoli SB, Cunha-Melo JR. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: animal study with fluorescent microspheres. World J Emerg Surg. 2012;22(7 Suppl 1):S9.

    Article  Google Scholar 

  27. Wilson M, Davis DP, Coimbra R. Diagnosis and monitoring of hemorrhagic shock during the initial resuscitation of multiple trauma patients: a review. J Emerg Med. 2003;24(4):413–22.

    Article  PubMed  Google Scholar 

  28. Ristagno G, Tang W, Sun S, Weil MH. Role of buccal PCO2 in the management of fluid resuscitation during hemorrhagic shock. Crit Care Med. 2006;34(12 Suppl):S442–6.

    Article  CAS  PubMed  Google Scholar 

  29. Soller B, Smith C, Zou F, Ellerby GE, Prince MD, Sondeen JL. Investigation of noninvasive muscle pH and oxygen saturation during uncontrolled hemorrhage and resuscitation in swine. Shock. 2014;42(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  30. Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, Gettings L, Linberg SE, Vary TC. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19(2):231–43.

    Article  CAS  PubMed  Google Scholar 

  31. Siegel JH, Fabian M, Smith JA, Kingston EP, Steele KA, Wells MR, et al. Oxygen debt criteria quantify the effectiveness of early partial resuscitation after hypovolemic hemorrhagic shock. J Trauma. 2003;54:862–80.

    Article  PubMed  Google Scholar 

  32. Siegel JH, Rivkind AI, Dala S, Goodarzi S. Early physiologic predictors of injury severity and death in blunt multiple trauma. Arch Surg. 1990;125:498–508.

    Article  CAS  PubMed  Google Scholar 

  33. Rixen D, Raum M, Holzgraefe B, Sauerland S, Nagelschmidt M, Neugebauer EA, Shock and Trauma Study Group. A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as indicators of severity. Shock. 2001;16:239–44.

    Article  CAS  PubMed  Google Scholar 

  34. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in septic shock. Chest. 1991;99:956–62.

    Article  CAS  PubMed  Google Scholar 

  35. Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG, Cooke WH, Holcomb JB. Physiological and medical monitoring for en route care of combat casualties. J Trauma. 2008;64 Suppl 4:S342–53.

    Article  PubMed  Google Scholar 

  36. Vary TC, Siegel JH, Rivkind A. Clinical and therapeutic significance of metabolic patterns of lactic acidosis. Perspect Crit Care. 1988;1:85–132.

    Google Scholar 

  37. Jansen TC, van Bommel J, Mulder PG, Rommes JH, Schieveld SJ, Bakker J. The prognostic value of blood lactate levels relative to that of vital signs in the pre-hospital setting: a pilot study. Crit Care. 2008;12(6):R160. Epub 17 Dec 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–81.

    Article  CAS  PubMed  Google Scholar 

  39. Smith I, Kumar P, Molloy S, et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27:74–83.

    Article  CAS  PubMed  Google Scholar 

  40. Husain FA, Martin MJ, Mullenix PS, et al. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg. 2003;185:485–91.

    Article  PubMed  Google Scholar 

  41. Kincaid EH, Miller PR, Meredith JW, et al. Elevated arterial base deficit in trauma patients: a marker of impaired oxygen utilization. J Am Coll Surg. 1998;187:384–92.

    Article  CAS  PubMed  Google Scholar 

  42. Rutherford EJ, Morris JA, Reed GW, et al. Base deficit stratifies mortality and determines therapy. J Trauma. 1992;33:417–23.

    Article  CAS  PubMed  Google Scholar 

  43. Fidkowski C, Helstrom J. Diagnosing metabolic acidosis in the critically ill: bridging the anion gap, Stewart, and base excess methods. Can J Anaesth. 2009;56(3):247–56. Epub 13 Feb 2009.

    Article  PubMed  Google Scholar 

  44. Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med. 2003;31(8):2131–6.

    Article  CAS  PubMed  Google Scholar 

  45. Martin MJ, FitzSullivan E, Salim A, Brown CV, Demetriades D, Long W. Discordance between lactate and base deficit in the surgical intensive care unit: which one do you trust? Am J Surg. 2006;191(5):625–30.

    Article  PubMed  Google Scholar 

  46. Lujan E, Howard R. Venous bicarbonate correlates linearly with arterial base deficit only if pH is constant. Arch Surg. 2006;141(1):105. Author reply 105.

    Article  PubMed  Google Scholar 

  47. Schmelzer TM, Perron AD, Thomason MH, Sing RF. A comparison of central venous and arterial base deficit as a predictor of survival in acute trauma. Am J Emerg Med. 2008;26(2):119–23.

    Article  PubMed  Google Scholar 

  48. Rossaint R, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, Gordini G, Stahel PF, Hunt BJ, Neugebauer E, Spahn DR. Key issues in advanced bleeding care in trauma. Shock. 2006;26:322–31.

    Article  PubMed  Google Scholar 

  49. Hierholzer C, Billiar TR. Molecular mechanisms in the early phase of hemorrhagic shock. Langenbecks Arch Surg. 2001;386:302–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Hoyt DB, Bouillon B. The coagulopathy of trauma: a review of mechanisms. J Trauma. 2008;65(4):748–54.

    Article  CAS  PubMed  Google Scholar 

  51. Moore FA, McKinley BA, Moore EE, Nathens AB, West M, Shapiro MB, Bankey P, Freeman B, Harbrecht BG, Johnson JL, Minei JP, Maier RV. Inflammation and the host response to injury, a large-scale collaborative project: patient-oriented research core: standard operating procedures for clinical care. III. Guidelines for shock resuscitation. J Trauma. 2006;61:82–9.

    Article  PubMed  Google Scholar 

  52. Ayala A, Wang P, Ba ZF, Perrin MM, Ertel W, Chaudry IH. Differential alterations in plasma IL-6 and TNF levels following trauma and hemorrhage. Am J Physiol. 1991;260:R167–71.

    CAS  PubMed  Google Scholar 

  53. Erber WN, Perry DJ. Plasma and plasma products in the treatment of massive haemorrhage. Best Pract Res Clin Haematol. 2006;19:97–112.

    Article  CAS  PubMed  Google Scholar 

  54. Krause KR, Howells GA, Buhs CL, Hernandez DA, Bair H, Schuster M, Bendick PJ. Hypothermia-induced coagulopathy during hemorrhagic shock. Am Surg. 2000;66(4):348–54.

    CAS  PubMed  Google Scholar 

  55. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL. Hemorrhagic shock. Curr Probl Surg. 1995;32:925–1002.

    Article  CAS  PubMed  Google Scholar 

  56. Sharrock AE, Midwinter M. Damage control - trauma care in the first hour and beyond: a clinical review of relevant developments in the field of trauma care. Ann R Coll Surg Engl. 2013;95(3):177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuei BJ, Kearney PA. Hypothermia in the trauma patient. Injury. 2004;35:7–15.

    Article  PubMed  Google Scholar 

  58. Martini WZ, Pusateri AE, Uscilowicz JM, et al. Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma. 2005;58:1002–9. Discussion 1009–1010.

    Article  PubMed  Google Scholar 

  59. Watts DD, Trask A, Soeken K, et al. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma. 1998;44:846–54.

    Article  CAS  PubMed  Google Scholar 

  60. Sebesta J. Special lessons learned from Iraq. Surg Clin North Am. 2006;86:711–26.

    Article  PubMed  Google Scholar 

  61. Wu X, Stezoski J, Safar P, Nozari A, Tisherman SA. After spontaneous hypothermia during hemorrhagic shock, continuing mild hypothermia (34 degrees C) improves early but not late survival in rats. J Trauma. 2003;55(2):308–16.

    Article  PubMed  Google Scholar 

  62. Wu X, Kochanek PM, Cochran K, Nozari A, Henchir J, Stezoski SW, Wagner R, Wisniewski S, Tisherman SA. Mild hypothermia improves survival after prolonged, traumatic hemorrhagic shock in pigs. J Trauma. 2005;59(2):291–9. Discussion 299–301.

    Article  PubMed  Google Scholar 

  63. Prueckner S, Safar P, Kentner R, Stezoski J, Tisherman SA. Mild hypothermia increases survival from severe pressure-controlled hemorrhagic shock in rats. J Trauma. 2001;50(2):253–62.

    Article  CAS  PubMed  Google Scholar 

  64. Wooten C, Schultz P, Sapida J, Laflamme C. Warming and treatment of mild hypothermia in the trauma resuscitation room—an intervention algorithm. J Trauma Nurs. 2004;11(2):64–6.

    PubMed  Google Scholar 

  65. Ho AM, Dion PW, Yeung JH, et al. Prevalence of survivor bias in observational studies on fresh frozen plasma: erythrocyte ratios in trauma requiring massive transfusion. Anesthesiology. 2012;116(3):716–28.

    Article  PubMed  Google Scholar 

  66. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, Cox ED, Gehrke MJ, Beilman GJ, Schreiber M, Flaherty SF, Grathwohl KW, Spinella PC, Perkins JG, Beekley AC, McMullin NR, Park MS, Gonzalez EA, Wade CE, Dubick MA, Schwab CW, Moore FA, Champion HR, Hoyt DB, Hess JR. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10.

    Article  PubMed  Google Scholar 

  67. Spinella PC, Holcomb JB. Resuscitation and transfusion principles for traumatic hemorrhagic shock. Blood Rev. 2009;23:231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stern SA. Low-volume fluid resuscitation for presumed hemorrhagic shock: helpful or harmful? Curr Opin Crit Care. 2001;7(6):422–30.

    Article  CAS  PubMed  Google Scholar 

  69. Phillips CR, Vinecore K, Hagg DS, Sawai RS, Differding JA, Watters JM, Schreiber MA. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care. 2009;13(2):R30. Epub 4 Mar 2009.

    Google Scholar 

  70. Scultetus A, Alam HB, Stanton K, et al. Dextran and Hespan resuscitation causes neutrophil activation in swine after hemorrhagic shock. Shock. 2000;13(Suppl):52.

    Google Scholar 

  71. Rana R, Fernández-Pérez ER, Khan SA, Rana S, Winters JL, Lesnick TG, Moore SB, Gajic O. Transfusion-related acute lung injury and pulmonary edema in critically ill patients: a retrospective study. Transfusion. 2006;46(9):1478–83.

    Article  PubMed  Google Scholar 

  72. Eder AF, Herron R, Strupp A, Dy B, Notari EP, Chambers LA, Dodd RY, Benjamin RJ. Transfusion-related acute lung injury surveillance (2003–2005) and the potential impact of the selective use of plasma from male donors in the American Red Cross. Transfusion. 2007;47(4):599–607.

    Article  PubMed  Google Scholar 

  73. Plurad D, Belzberg H, Schulman I, Green D, Salim A, Inaba K, Rhee P, Demetriades D. Leukoreduction is associated with a decreased incidence of late onset acute respiratory distress syndrome after injury. Am Surg. 2008;74(2):117–23.

    PubMed  Google Scholar 

  74. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62(3):636–9.

    Article  PubMed  Google Scholar 

  75. Kiraly LN, Differding JA, Enomoto TM, Sawai RS, Muller PJ, Diggs B, Tieu BH, Englehart MS, Underwood S, Wiesberg TT, Schreiber MA. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. 2006;61(1):57–64. Discussion 64–5.

    Article  PubMed  Google Scholar 

  76. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93(4):817–22.

    Article  CAS  PubMed  Google Scholar 

  77. Bickell WH, Bruttig SP, Millnamow GA, O’Benar J, Wade CE. The detrimental effects of intravenous crystalloid after aortotomy in swine. Surgery. 1991;110(3):529–36.

    CAS  PubMed  Google Scholar 

  78. Smith CA, Duby JJ, Utter GH, Galante JM, Scherer LA, Schermer CR. Cost-minimization analysis of two fluid products for resuscitation of critically injured trauma patients. Am J Health Syst Pharm. 2014;71:470–5.

    Article  CAS  PubMed  Google Scholar 

  79. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA. Major complications, mortality, and resource utilization after open abdominal surgery 0.9% saline compared to plasma-lyte. Ann Surg. 2012;255:821–9.

    Article  PubMed  Google Scholar 

  80. Cotton BA, Reddy N, Hatch QM, LeFebvre E, Wade CE, Kozar RA, Gill BS, Albarado R, McNutt MK, Holcomb JB. Damage control resuscitation is associated with a reduction in resuscitation volumes and improvement in survival in 390 damage control laparotomy patients. Ann Surg. 2011;254(4):598–605.

    Article  PubMed  Google Scholar 

  81. Morrison CA, Carrick MM, Norman MA, Scott BG, Welsh FJ, Tsai P, Liscum KR, Wall Jr MJ, Mattox KL. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.

    Article  PubMed  Google Scholar 

  82. Skarda DE, Mulier KE, George ME, Bellman GJ. Eight hours of hypotensive versus normotensive resuscitation in a porcine model of controlled hemorrhagic shock. Acad Emerg Med. 2008;15(9):845–52.

    Article  PubMed  Google Scholar 

  83. Bickell WH, Wall Jr MJ, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–9.

    Article  CAS  PubMed  Google Scholar 

  84. Sondeen JL, Coppes VG, Holcomb JB. Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma. 2003;54 Suppl 5:S110–7.

    PubMed  Google Scholar 

  85. D’Alleyrand JC, Dutton RP, Pollak AN. Extrapolation of battlefield resuscitative care to the civilian setting. J Surg Orthop Adv. 2010;19(1):62–9.

    PubMed  Google Scholar 

  86. Vassar MJ, Fischer RP, O’Brien PE, Bachulis BL, Chambers JA, Hoyt DB, Holcroft JW, The Multicenter Group for the Study of Hypertonic Saline in Trauma Patients. A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride. The effect of added dextran 70. Arch Surg. 1993;128(9):1003–11. Discussion 1011–3.

    Article  CAS  PubMed  Google Scholar 

  87. Vassar MJ, Perry CA, Gannaway WL, Holcroft JW. 7.5% sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg. 1991;126(9):1065–72.

    Article  CAS  PubMed  Google Scholar 

  88. Rizoli SB, Rhind SG, Shek PN, Inaba K, Filips D, Tien H, Brenneman F, Rotstein O. The immunomodulatory effects of hypertonic saline resuscitation in patients sustaining traumatic hemorrhagic shock: a randomized, controlled, double-blinded trial. Ann Surg. 2006;243(1):47–57.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Rhind SG, Crnko NT, Baker AJ, Morrison LJ, Shek PN, Scarpelini S, Rizoli SB. Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J Neuroinflammation. 2010;7:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer’s solution versus hypertonic saline. Crit Care Med. 1998;26(7):1265–70.

    Article  CAS  PubMed  Google Scholar 

  91. Radhakrishnan RS, Xue H, Moore-Olufemi SD, Weisbrodt NW, Moore FA, Allen SJ, Laine GA, Cox Jr CS. Hypertonic saline resuscitation prevents hydrostatically induced intestinal edema and ileus. Crit Care Med. 2006;34(6):1713–8.

    Article  CAS  PubMed  Google Scholar 

  92. Cox Jr CS, Radhakrishnan R, Villarrubia L, Xue H, Uray K, Gill BS, Stewart RH, Laine GA. Hypertonic saline modulation of intestinal tissue stress and fluid balance. Shock. 2008;29(5):598–602.

    PubMed  Google Scholar 

  93. Sheikh AA, Matsuoka T, Wisner DH. Cerebral effects of resuscitation with hypertonic saline and a new low-sodium hypertonic fluid in hemorrhagic shock and head injury. Crit Care Med. 1996;24(7):1226–32.

    Article  CAS  PubMed  Google Scholar 

  94. Bulger EM, Jurkovich GJ, Nathens AB, Copass MK, Hanson S, Cooper C, et al. Hypertonic resuscitation of hypovolemic shock after blunt trauma: a randomized controlled trial. Arch Surg. 2008;143(2):139–48. Discussion 149.

    Article  PubMed  Google Scholar 

  95. Bulger EM, May S, Kerby JD, Emerson S, Stiell IG, Schreiber MA, ROC Investigators, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Riha GM, Kunio NR, Van PY, Hamilton GJ, Anderson R, Differding JA, Schreiber MA. Hextend and 7.5% hypertonic saline with dextran are equivalent to lactated ringer’s in a swine model of initial resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2011;71(6):1755–60.

    CAS  PubMed  Google Scholar 

  97. Cothren CC, Moore EE. Emergency department thoracotomy for the critically injured patient: objectives, indications, and outcomes. World J Emerg Surg. 2006;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Brenner M. REBOA and catheter-based technology in trauma. J Trauma Acute Care Surg. 2015;79(1):174–5.

    Article  PubMed  Google Scholar 

  99. Brenner ML, Moore LJ, DuBose JJ, Tyson GH, McNutt MK, Albarado RP, et al. A clinical series of resuscitative endovascular balloon occlusion of the aorta for hemorrhage control and resuscitation. J Trauma Acute Care Surg. 2013;75(3):506–11.

    Article  PubMed  Google Scholar 

  100. Moore LJ, Brenner ML, Kozar RA, Pasley J, Wade CE, Baraniuk MS, Scalea T, Holcomb JB. Implementation of resuscitative endovascular balloon occlusion of the aorta as an alternative to resuscitative thoracotomy for noncompressible truncal hemorrhage. J Trauma Acute Care Surg. 2015;79(4):523–32.

    Article  PubMed  Google Scholar 

  101. Saito N, Matsumoto H, Yagi T, Hara Y, Hayashida K, Motomura T, Mashiko K, Iida H, Yokota H, Wagatsuma Y. Evaluation of the safety and feasibility of resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg. 2015;78(5):897–903. Discussion 904.

    Article  PubMed  Google Scholar 

  102. Johansson PI, Stissing T, Bochsen L, et al. Thrombelastography (TEG) in trauma. Scand J Trauma Resusc Emerg Med. 2009;17:45.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Plotkin AJ, Wade CE, Jenkins DH, et al. A reduction in clot formation rate and strength assessed by thrombelastography is indicative of transfusion requirements in patients with penetrating injuries. J Trauma. 2008;64:64–8.

    Article  Google Scholar 

  104. Afshari A, Wikkelsø A, Brok J, Møller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011;16(3), CD007871.

    Google Scholar 

  105. Johansson PI, Ostrowski SR. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation. Med Hypotheses. 2010;75(6):564–7. Epub 13 Aug 2010.

    Article  CAS  PubMed  Google Scholar 

  106. Reikvam H, Steien E, Hauge B, Liseth K, Gjerde Hagen K, Størkson R, et al. Thrombelastography. Transfus Apher Sci. 2009;40:119–23.

    Article  PubMed  Google Scholar 

  107. Stammers AH, Bruda NL, Gonano C, Hartmann T. Point-of-care coagulation monitoring: applications of the thromboelastography. Anaesthesia. 1998;53 Suppl 2:58–9.

    PubMed  Google Scholar 

  108. Cotton B, Minei K, Radwan ZA, Matijevic N, Pivalizza E, Podbielski J, et al. Admission rapid thrombeolastography (r-TEG) predicts development of pulmonary embolism in trauma patients. J Trauma Acute Care Surg. 2012;72(6):1470–5.

    Article  PubMed  Google Scholar 

  109. McCrath DJ, Cerboni E, Frumento RJ, et al. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction. Anesth Analg. 2005;100:1576–83.

    Article  PubMed  Google Scholar 

  110. CRASH-2 Collaborators, Roberts I, Shakur H, Afolabi A, Brohi K, Coats T, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):1096–101.

    Google Scholar 

  111. Henry DA, Carless PA, Moxey AJ, et al. Antifibrinolytic use for minimizing perioperative allogenic blood transfusion. Cochrane Database Syst Rev. 2011;3, CD001886.

    Google Scholar 

  112. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  113. CRASH-2 Trial Collaborators, Shakur H, Roberts I, Bautista R, Caballero J, Coats T, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant hemorrhage (CRASH-2): a randomized, placebo controlled trial. Lancet. 2010;376(9734):23–32.

    Google Scholar 

  114. Hess JR, Holcomb JB, Hoyt DB. Damage control resuscitation: the need for specific blood products to treat the coagulopathy of trauma. Transfusion. 2006;46:685–6.

    Article  PubMed  Google Scholar 

  115. Holcomb JB. Damage control resuscitation. J Trauma. 2007;62:S36–7.

    Article  PubMed  Google Scholar 

  116. Duchesne JC, Kimonis K, Marr AB, Rennie KV, Wahl G, Wells JE, et al. Damage control resuscitation in combination with damage control laparotomy: a survival advantage. J Trauma. 2010;69(1):46–52.

    Article  PubMed  Google Scholar 

  117. Duchesne JC, Barbeau JM, Islam TM, Wahl G, Greiffenstein P, McSwain Jr NE. Damage control resuscitation: from emergency department to the operating room. Am Surg. 2011;77(2):201–6.

    PubMed  Google Scholar 

  118. Hess JR, Holcomb JB. Resuscitating PROPPRly. Transfusion. 2015;55(6):1362–4.

    Article  PubMed  Google Scholar 

  119. Duchesne JC, Hunt JP, Wahl G, Marr AB, Wang YZ, Weintraub SE, Wright MJ, McSwain Jr NE. Review of current blood transfusions strategies in a mature level I trauma center: were we wrong for the last 60 years? J Trauma. 2008;65(2):272–6. Discussion 276–8.

    Article  PubMed  Google Scholar 

  120. Ho AM, Karmakar MK, Dion PW. Are we giving enough coagulation factors during major trauma resuscitation? Am J Surg. 2005;190:479–84.

    Article  PubMed  Google Scholar 

  121. Dente CJ, Shaz BH, Nicholas JM, et al. Improvements in early mortality and coagulopathy are sustained better in patients with blunt trauma after institution of a massive transfusion protocol in a civilian Level I trauma center. J Trauma. 2009;66:1616–24.

    Article  PubMed  Google Scholar 

  122. Zink KA, Sambasivan CN, Holcomb JB, et al. A high ratio of plasma and platelets to packed red blood cells in the first 6 hours of massive transfusion improves outcomes in a large multi center study. Am J Surg. 2009;197:565–70. Discussion 570.

    Article  PubMed  Google Scholar 

  123. Novak DJ, Bai Y, Cooke RK, et al. Making thawed universal donor plasma available rapidly for massively bleeding trauma patients: the experience of the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial centers. Transfusion. 2015;55(6):1331–9.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Cao Y, Dua A, Matijevic N, Wang Y-W, Pati S, Wade CE, Ko TC, Holcomb JB. Never-frozen liquid plasma blocks endothelial permeability as effectively as thawed fresh frozen plasma. J Trauma Acute Care Surg. 2014;77(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  125. Roberts I, Shakur H, Ker K, Coats T, CRASH-2 Trial Collaborators. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2012;12, CD004896.

    PubMed  Google Scholar 

  126. Harvin JA, Peirce CA, Mims MM, Hudson JA, Podbielski JM, Wade CE, Holcomb JB, Cotton BA. The impact of tranexamic acid on mortality in injured patients with hyperfibrinolysis. J Trauma Acute Care Surg. 2015;78(5):905–9. Discussion 909–11.

    Article  PubMed  Google Scholar 

  127. Napolitano LM, Cohen MJ, Cotton BA, Schreiber MA, Moore EE. Tranexamic acid in trauma: how should we use it? J Trauma Acute Care Surg. 2013;74(6):1575–86.

    Article  PubMed  Google Scholar 

  128. Coimbra R, Porcides R, Loomis W, Melbostad H, Lall R, Deree J, Wolf P, Hoyt DB. HSPTX protects against hemorrhagic shock resuscitation-induced tissue injury: an attractive alternative to Ringer’s lactate. J Trauma. 2006;60(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  129. Hatoum OA, Bashenko Y, Hirsh M, Krausz MM. Continuous fluid resuscitation for treatment of uncontrolled hemorrhagic shock following massive splenic injury in rats. Shock. 2002;18(6):574–9.

    Article  PubMed  Google Scholar 

  130. Solomonov E, Hirsh M, Yahiya A, Krausz MM. The effect of vigorous fluid resuscitation in uncontrolled hemorrhagic shock after massive splenic injury. Crit Care Med. 2000;28(3):749–54.

    Article  CAS  PubMed  Google Scholar 

  131. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Valdivia A, Sailors RM, Moore FA. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138(6):637–42. Discussion 642–3.

    Article  PubMed  Google Scholar 

  132. Popovsky MA. Pulmonary consequences of transfusion: TRALI and TACO. Transfus Apher Sci. 2006;34(3):243–4. Epub 26 July 2006.

    Article  PubMed  Google Scholar 

  133. Gajic O, Gropper MA, Hubmayr RD. Pulmonary edema after transfusion: how to differentiate transfusion-associated circulatory overload from transfusion-related acute lung injury. Crit Care Med. 2006;34 Suppl 5:S109–13.

    Article  PubMed  Google Scholar 

  134. Haupt MT, Teerapong P, Green D, Schaeffer Jr RC, Carlson RW. Increased pulmonary edema with crystalloid compared to colloid resuscitation of shock associated with increased vascular permeability. Circ Shock. 1984;12(3):213–24.

    CAS  PubMed  Google Scholar 

  135. Balogh Z, Moore FA, Moore EE, Biffl WL. Secondary abdominal compartment syndrome: a potential threat for all trauma clinicians. Injury. 2007;38(3):272–9. Epub 15 Nov 2006.

    Article  PubMed  Google Scholar 

  136. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Holcomb JB, Ware DN, Moore FA. Secondary abdominal compartment syndrome is an elusive early complication of traumatic shock resuscitation. Am J Surg. 2002;184(6):538–43. Discussion 543–4.

    Article  PubMed  Google Scholar 

  137. Maxwell RA, Fabian TC, Croce MA, Davis KA. Secondary abdominal compartment syndrome: an underappreciated manifestation of severe hemorrhagic shock. J Trauma. 1999;47(6):995–9.

    Article  CAS  PubMed  Google Scholar 

  138. Sugrue M, Buhkari Y. Intra-abdominal pressure and abdominal compartment syndrome in acute general surgery. World J Surg. 2009;33(6):1123–7.

    Article  PubMed  Google Scholar 

  139. Hatch QM, Osterhout LM, Ashraf A, Podbielski J, Kozar RA, Wade CE, et al. Current use of damage-control laparotomy, closure rates, and predictors of early fascial closure at the first take-back. J Trauma. 2011;70(6):1429–36.

    Article  PubMed  Google Scholar 

  140. van Boele HP, Wind J, Dijkgraaf MG, Busch OR, Carel GJ. Temporary closure of the open abdomen: a systematic review on delayed primary fascial closure in patients with an open abdomen. World J Surg. 2009;33(2):199–207.

    Article  Google Scholar 

  141. Bueno L, Ferre JP, Ruckebusch Y. Effects of anesthesia and surgical procedures on intestinal myoelectric activity in rats. Dig Dis. 1978;23:690–5.

    Article  CAS  Google Scholar 

  142. Livingston EH, Passaro Jr EP. Postoperative ileus. Dig Dis Sci. 1990;35:121–32.

    Article  CAS  PubMed  Google Scholar 

  143. Bauer AJ, Schwarz NT, Moore BA, Türler A, Kalff JC. Ileus in critical illness: mechanisms and management. Curr Opin Crit Care. 2002;8(2):152–7.

    Article  PubMed  Google Scholar 

  144. Balogh Z, McKinley BA, Cox Jr CS, et al. Abdominal compartment syndrome: the cause or effect of postinjury multiple organ failure. Shock. 2003;20:483.

    Article  PubMed  Google Scholar 

  145. Drake RE, Teague RA, Gabel JC. Lymphatic drainage reduces intestinal edema and fluid loss. Lymphology. 1998;31:68.

    CAS  PubMed  Google Scholar 

  146. Lyon M, Blaivas M, Brannam L. Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med. 2005;23(1):45–50.

    Article  PubMed  Google Scholar 

  147. Yanagawa Y, Sakamoto T, Okada Y. Hypovolemic shock evaluated by sonographic measurement of the inferior vena cava during resuscitation in trauma patients. J Trauma. 2007;63(6):1245–8. Discussion 1248.

    Article  PubMed  Google Scholar 

  148. Stawicki SP, Braslow BM, Panebianco NL, Kirkpatrick JN, Gracias VH, Hayden GE, Dean AJ. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg. 2009;209(1):55–61. Epub 1 May 2009.

    Article  PubMed  Google Scholar 

  149. Murphy EH, Arko FR, Trimmer CK, Phangureh VS, Fogarty TJ, Zarins CK. Volume associated dynamic geometry and spatial orientation of the inferior vena cava. J Vasc Surg. 2009;50(4):835–42. Discussion 842–3; Epub 6 Aug 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Holcomb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwartz, D.A., Holcomb, J. (2017). Initial Resuscitation and Management of the Hemodynamically Unstable Patient. In: Moore, L., Todd, S. (eds) Common Problems in Acute Care Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-42792-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42792-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42790-4

  • Online ISBN: 978-3-319-42792-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics