Skip to main content

Prediction of Hot Spots Based on Physicochemical Features and Relative Accessible Surface Area of Amino Acid Sequence

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

Abstract

Hot spot is dominant for understanding the mechanism of protein-protein interactions and can be applied as a target to drug design. Since experimental methods are costly and time-consuming, computational methods are prevalently applied as an useful tool in hot spot prediction through sequence or structure information. Here, we propose a new sequence-based model that combines physicochemical features with relative accessible surface area of amino acid sequence. The model consists of 83 classifiers involving IBk algorithm, where instances for one classifier are encoded by corresponding property extracted from 544 properties in AAindex1 database. Then several top performance classifiers with respect to F1 score are selected to be an ensemble by majority voting technique. The model outperforms other state-of-the-art computational methods, yields a F1 score of 0.80 on BID test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chothia, C., Janin, J.: Principles of protein-protein recognition. Nature 256(5520), 705–708 (1975)

    Article  Google Scholar 

  2. Bogan, A.A., Thorn, K.S.: Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280(1), 1–9 (1998)

    Article  Google Scholar 

  3. Brenke, R., Kozakov, D., Chuang, G.Y., Beglov, D., Hall, D., Landon, M.R., Mattos, C., Vajda, S.: Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics 25(5), 621–627 (2009)

    Article  Google Scholar 

  4. Wells, J.A.: Systematic mutational analyses of protein-protein interfaces. Methods Enzymol. 202, 390–411 (1991)

    Article  Google Scholar 

  5. DeLano, W.L.: Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12(1), 14–20 (2002)

    Article  Google Scholar 

  6. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Nat. Acad. Sci. U.S.A. 99(22), 14116–14121 (2002)

    Article  Google Scholar 

  7. Guerois, R., Nielsen, J.E., Serrano, L.: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320(2), 369–387 (2002)

    Article  Google Scholar 

  8. Darnell, S.J., Page, D., Mitchell, J.C.: An automated decision-tree approach to predicting protein interaction hot spots. Proteins 68(4), 813–823 (2007)

    Article  Google Scholar 

  9. Shingate, P., Manoharan, M., Sukhwa, A., Sowdhamini, R.: ECMIS: computational approach for the identification of hotspots at protein-protein interfaces. BMC Bioinformatics 15, 303 (2014)

    Article  Google Scholar 

  10. Wang, L., Zhang, W., Gao, Q., Xiong, C.: Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues. IET Syst. Biol. 8(4), 184–190 (2014)

    Article  Google Scholar 

  11. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M.: AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. (Database Issue) 36, D202–205 (2008)

    Article  Google Scholar 

  12. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  13. Thorn, K.S., Bogan, A.A.: ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions. Bioinformatics 17(3), 284–285 (2001)

    Article  Google Scholar 

  14. Fischer, T.B., Arunachalam, K.V., Bailey, D., Mangual, V., Bakhru, S., Russo, R., Huang, D., Paczkowski, M., Lalchandani, V., Ramachandra, C.: The binding interface database (BID): a compilation of amino acid hot spots in protein interfaces. Bioinformatics 19(11), 1453–1454 (2003)

    Article  Google Scholar 

  15. Chen, P., Li, J., Wong, L., Kuwahara, H., Huang, J.Z., Gao, X.: Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences. Proteins 81(8), 1351–1362 (2013)

    Article  Google Scholar 

  16. Chou, K.C.: Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43(3), 246–255 (2001)

    Article  Google Scholar 

  17. Liu, B., Wang, S., Wang, X.: DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation. Sci. Rep. 5, 15479 (2015)

    Article  Google Scholar 

  18. Tang, H., Chen, W., Lin, H.: Identification of immunoglobulins using chou’s pseudo amino acid composition with feature selection technique. Mol. BioSyst. 12(4), 1269–1275 (2016)

    Article  Google Scholar 

  19. Shen, H.B., Chou, K.C.: PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem. 373(2), 386–388 (2008)

    Article  Google Scholar 

  20. Martins, J.M., Ramos, R.M., Pimenta, A.C., Moreira, I.S.: Solvent-accessible surface area: how well can be applied to hot-spot detection? Proteins 82(3), 479–490 (2014)

    Article  Google Scholar 

  21. Chen, R., Chen, W., Yang, S., Wu, D., Wang, Y., Tian, Y., Shi, Y.: Rigorous assessment and integration of the sequence and structure based features to predict hot spots. BMC Bioinformatics 12, 311 (2011)

    Article  Google Scholar 

  22. Petersen, B., Petersen, T.N., Andersen, P., Nielsen, M., Lundegaard, C.: A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct. Biol. 9, 51 (2009)

    Article  Google Scholar 

  23. Darnell, S.J., LeGault, L., Mitchell, J.C.: KFC server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res. (Web Server Issue). 36, W265–269 (2008)

    Article  Google Scholar 

  24. Ofran, Y., Rost, B.: ISIS: interaction sites identified from sequence. Bioinformatics 23(2), E13–E16 (2007)

    Article  Google Scholar 

  25. Tuncbag, N., Gursoy, A., Keskin, O.: Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25(12), 1513–1520 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 61300058, 61472282, 61271098 and 61374181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, S., Chen, P., Zhang, J., Wang, B. (2016). Prediction of Hot Spots Based on Physicochemical Features and Relative Accessible Surface Area of Amino Acid Sequence. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics