Skip to main content

Future of Healthcare—Sensor Data-Driven Prognosis

  • Chapter
  • First Online:
Wireless World in 2050 and Beyond: A Window into the Future!

Part of the book series: Springer Series in Wireless Technology ((SSWT))

Abstract

Connected Wellness/Healthcare is all about retrieving people’s physiological parameters through sensors and performing analysis. Individually, such analytics can help a patient to maintain a wellness regime, or to decide when to see a doctor, and can assist doctors in diagnosis. Collectively, such analytics, if performed over a long time over large set of patients, has the potential to discover new disease diagnostic and treatment protocols. In this chapter, we first discuss how advances in sensing and analytics can take us from a reactive illness-driven healthcare system to a proactive wellness-driven system. We introduce an IoT driven architecture and discuss how non-invasive, affordable, unobtrusive sensing using mobile phones, wearables and nearables is making physiological and pathological data collection from human body possible in thus far unimaginable ways. We also introduce breakthrough technologies in form of exosomes and 3D organ printing that has the potential to disrupt the future healthcare landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.aoa.acl.gov/Aging_Statistics/index.aspx.

  2. 2.

    http://www.continuaalliance.org.

  3. 3.

    http://www.tcs.com/about/research/Pages/TCS-Connected-Universe-Platform.aspx.

  4. 4.

    http://www.omron-healthcare.com.

  5. 5.

    http://www.samsung.com/in/business/business-products/healthcare-product.

  6. 6.

    http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2015/ITU_Key_2005-2015_ICT_data.xls.

  7. 7.

    http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694.

  8. 8.

    https://www.fitbit.com.

  9. 9.

    http://www.shimmersensing.com/.

  10. 10.

    https://www.empatica.com/.

  11. 11.

    http://www.bluetooth.com/Pages/low-energy-tech-info.aspx.

  12. 12.

    http://www.healthline.com/health-news/diabetes-google-develops-glucose-monitoring-contact-lens-012314.

  13. 13.

    http://www.superiorideas.org/projects/infant-teardrop.

  14. 14.

    http://www.wired.com/2014/11/sweat-sensors/.

  15. 15.

    http://www.marsdd.com/news-and-insights/ingestibles-smart-pills-revolutionize-healthcare/.

  16. 16.

    http://www.the-scientist.com/?articles.view/articleNo/30793/title/Exosome-Explosion/.

  17. 17.

    http://apps.who.int/classifications/icd10/browse/2016/en.

  18. 18.

    https://www.nlm.nih.gov/research/umls.

  19. 19.

    https://www.nlm.nih.gov/research/umls/rxnorm.

  20. 20.

    https://en.wikipedia.org/wiki/Curse_of_dimensionality.

  21. 21.

    http://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html.

  22. 22.

    https://en.wikipedia.org/wiki/A_Game_of_Thrones.

  23. 23.

    http://awoiaf.westeros.org/index.php/Wall.

References

  1. Ghose A, Sinha P, Bhaumik C, Sinha A, Agrawal A, Choudhury AD (2013) UbiHeld: ubiquitous healthcare monitoring system for elderly and chronic patients. In: Proceedings of the 2013 ACM conference on pervasive and ubiquitous computing adjunct publication. ACM, pp 1255–1264

    Google Scholar 

  2. Khan WZ, Xiang Y, Aalsalem MY, Arshad Q (2013) Mobile phone sensing systems: a survey. IEEE Commun Surv Tutorials 15(1):402–427

    Article  Google Scholar 

  3. Chandel V, Choudhury AD, Ghose A, Bhaumik C (2014) AcTrak-unobtrusive activity detection and step counting using smartphones. In: Mobile and ubiquitous systems: computing, networking, and services. Springer, pp 447–459

    Google Scholar 

  4. Pal, A, Sinha A, Choudhury AD, Chattopadyay T, Visvanathan A (2013) A robust heart rate detection using smart-phone video. In: Proceedings of the 3rd ACM MobiHoc workshop on pervasive wireless healthcare. ACM, pp 43–48

    Google Scholar 

  5. Banerjee R, Ghose A, Choudhury AD, Sinha A, Pal A (2015) Noise cleaning and Gaussian modeling of smart phone photoplethysmogram to improve blood pressure estimation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 967–971

    Google Scholar 

  6. Karlen W, Lim J, Ansermino JM, Dumont G, Scheffer C (2012) Design challenges for camera oximetry on a mobile phone. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2448–2451

    Google Scholar 

  7. Brusco M, Nazeran H (2004) Digital phonocardiography: a PDA-based approach. In: 26th annual international conference of the IEEE engineering in medicine and biology society, IEMBS’04, vol 1. IEEE, pp 2299–2302

    Google Scholar 

  8. Larson, EC, Goel M, Boriello G, Heltshe S, Rosenfeld M, Patel SN (2012) SpiroSmart: using a microphone to measure lung function on a mobile phone. In: Proceedings of the 2012 ACM conference on ubiquitous computing. ACM, pp 280–289

    Google Scholar 

  9. Yan Q, Peng B, Su G, Cohan BE, Major TC, Meyerhoff ME (2011) Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal Chem 83(21):8341–8346. doi:10.1021/ac201700c. 12 Oct 2011

    Google Scholar 

  10. Jadoon S, Karim S, Akram MR, Kalsoom Khan A, Zia MA, Siddiqi AR, Murtaza G (2015) Recent developments in sweat analysis and its applications. Int J Anal Chem 2015. Article ID 164974, http://dx.doi.org/10.1155/2015/164974

  11. Wu HY, Rubinstein M, Shih E, Guttag J, Durand F, Freeman W (2012) Eulerian video magnification for revealing subtle changes in the world. ACM Trans Graph 31, 4. Article 65. doi:http://dx.doi.org/10.1145/2185520.2185561

    Google Scholar 

  12. Adib F, Mao H, Kabelac Z, Katabi D, Miller RC (2015) Smart homes that monitor breathing and heart rate. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems. ACM, pp 837–846

    Google Scholar 

  13. Merceron TK, Burt M, Seol Y-J, Kang H-W, Lee SJ, Yoo JJ, Atala A (2015) A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication 7(3):035003

    Article  Google Scholar 

  14. Mohammed S, Villarroel M, Reisner AT, Clifford G, Lehman L-W, Moody G, Heldt T, Kyaw TH, Moody B, Mark RG (2011) Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database 39:952–960. doi:10.1097/CCM.0b013e31820a92c6

    Google Scholar 

  15. Sweeney KT, Ward TE, McLoone SF (2012) Artifact removal in physiological signals—practices and possibilities, information technology in biomedicine. IEEE Trans 16(3): 488–500. doi:10.1109/TITB.2012.2188536. Date of Publication: 22 Feb 2012

    Google Scholar 

  16. Akhtar MT, Mitsuhashi W, James CJ (2012) Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Sig Process 92(2): 401–416. ISSN 0165-1684, http://dx.doi.org/10.1016/j.sigpro.2011.08.005

    Google Scholar 

  17. Yorkey TJ (1997) Method and apparatus for removing artifact and noise from pulse oximetry. U.S. Patent No. 5,645,060. 8 Jul 1997

    Google Scholar 

  18. Pivovarov R, Elhadad N (2015) Automated methods for the summarization of electronic health records. J Am Med Inform Assoc 1–12. doi:10.1093/jamia/ocv032

    Google Scholar 

  19. Buchanan BG, Shortliffe EH (1984) Rule based expert systems: the MYCIN experiments of the Stanford heuristic programming project. Addison-Wesley, Reading, MA. ISBN 978-0-201-10172-0

    Google Scholar 

  20. Ji C-R, Deng Z-H (2007) Mining frequent ordered patterns without candidate generation. In: Fourth international conference on fuzzy systems and knowledge discovery, FSKD 2007, vol 1. IEEE

    Google Scholar 

  21. He H-T, Zhang S-L (2007) A new method for incremental updating frequent patterns mining. In: Second international conference on innovative computing, information and control, ICICIC’07. IEEE

    Google Scholar 

  22. Rodríguez-González AY et al (2013) Mining frequent patterns and association rules using similarities. Expert Syst Appl 40(17):6823–6836

    Article  Google Scholar 

  23. Nahar J et al (2013) Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst Appl 40(4):1086–1093

    Article  Google Scholar 

  24. Olukunle A, Ehikioya S (2002) A fast algorithm for mining association rules in medical image data. In: Canadian conference on electrical and computer engineering, IEEE CCECE 2002, vol 2, pp 1181–1187. doi:10.1109/CCECE.2002.1013116

  25. Carnethon MR, Prineas RJ, Temprosa M et al (2006) Diabetes prevention program research group. The association among autonomic nervous system function, incident diabetes, and intervention arm in the diabetes prevention program. Diabetes Care 29:914–919

    Article  Google Scholar 

  26. Mukherjee A, Pal A, Misra P (2012) Data analytics in ubiquitous sensor-based health information systems. In: 6th international conference on next generation mobile applications, services and technologies (NGMAST). IEEE

    Google Scholar 

  27. Kara N, Dragoi OA (2007) Reasoning with contextual data in telehealth applications. In: 3rd international conference on wireless and mobile computing, networking and communications

    Google Scholar 

  28. Sajda P (2006) Machine learning for detection and diagnosis of disease. Ann Rev Biomed Eng 8:537–565

    Article  Google Scholar 

  29. Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23(1): 89–109. ISSN 0933-3657, http://www.sciencedirect.com/science/article/pii/S093336570100077X

    Google Scholar 

  30. Shankaracharya OD, Samanta S, Vidyarthi AS (2010) Computational intelligence in early diabetes diagnosis: a review. Rev Diabet Stud 2010 Winter 7(4):252–262

    Google Scholar 

  31. Zhao X, Cheung LW (2007) Kernel-imbedded gaussian processes for disease classification using microarray gene expression data. BMC Bioinform 8. 28 Feb 2007

    Google Scholar 

  32. Han X (2007) Cancer molecular pattern discovery by subspace consensus kernel classification. Comput Syst Bioinform Conf 6:55–65

    Google Scholar 

  33. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631–643

    Article  Google Scholar 

  34. Coates A, Ng AY, Lee H (2011) An analysis of single-layer networks in unsupervised feature learning. In: International conference on artificial intelligence and statistics

    Google Scholar 

  35. Ranzato MA et al (2007) Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: IEEE conference on computer vision and pattern recognition, CVPR’07. IEEE

    Google Scholar 

  36. Salakhutdinov R, Mnih A, Hinton G (2007) Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th international conference on Machine learning. ACM

    Google Scholar 

  37. Vincent P et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11:3371–3408

    MathSciNet  MATH  Google Scholar 

  38. Längkvist M, Karlsson L, Loutfi A (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Syst 2012:5

    Google Scholar 

  39. Wulsin DF et al (2011) Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement. J Neural Eng 8(3):036015

    Article  Google Scholar 

  40. Längkvist M, Loutfi A (2011) Unsupervised feature learning for electronic nose data applied to bacteria identification in blood. NIPS 2011 workshop on deep learning and unsupervised feature learning

    Google Scholar 

  41. Mirowski PW, Madhavan D, LeCun Y (2007) Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation. In: Proceedings of the national conference on artificial intelligence, vol 22, No. 2. AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA, London, 1999, 2007

    Google Scholar 

  42. Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn Lett 42: 11–24. (http://www.sciencedirect.com/science/article/pii/S0167865514000221). 1 Jun 2014

    Google Scholar 

  43. Ferrucci D, Brown E, Chu-Carroll J, Fan J, Gondek D, Kalyanpur AA, Lally A et al (2010) Building Watson: an overview of the DeepQA project. AI Mag 31(3):59–79

    Google Scholar 

  44. Kelly III J, Hamm S (2013) Smart machines: IBM’s Watson and the era of cognitive computing. Columbia University Press

    Google Scholar 

Download references

Acknowledgments

We thank all our fellow scientists and engineers at Innovation Lab, TCS for their help, inputs and observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pal, A., Mukherjee, A., Dey, S. (2016). Future of Healthcare—Sensor Data-Driven Prognosis. In: Prasad, R., Dixit, S. (eds) Wireless World in 2050 and Beyond: A Window into the Future!. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42141-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42141-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42140-7

  • Online ISBN: 978-3-319-42141-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics