Skip to main content

Part of the book series: Springer Series in Wireless Technology ((SSWT))

  • 1045 Accesses

Abstract

This chapter considers the telecommunication access network technologies and their development trends in the future. The impact of these technologies on society is pointed out and an overview of the fixed and wireless Next Generation Access (NGA) is presented. The evolution of the current access networks, including topics such as future fiber and wireless access technologies and architectures, convergence of fixed and wireless access and virtualization of the core network are discussed. Based on the review and analysis of these issues, the idea for the development of the future telecommunication networks towards a Unified Virtual Network , having a unique and unified core and access infrastructure, is presented. A vision for the future development and evolution of such a virtual network is outlined, and the way that the physical and theoretical limits of the communication link throughput could be reached and even in some way exceeded. The development and evolution is considered to be a constant process towards super intelligence and perfection in such a way that the access network with all its users (humans and machines) will become a very intelligent and unique entity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson Reuters (2014) The world in 2025: 10 predictions of innovation. http://sciencewatch.com/sites/sw/files/m/pdf/World-2025.pdf

  2. Cisco (2015) Cisco visual networking index: forecast and methodology, 2014–2019. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf. Accessed 27 May 2015

  3. Tsagklas T, Pavlidou FN (2011) A survey on radio-and-fiber FiWi network architectures. Cyber J Multidisciplinary J Sci Technol, J Sel Areas Telecommun (JSAT) March Edition:18–24

    Google Scholar 

  4. Maier M (2014) Fiber-wireless (FiWi) broadband access networks in an age of convergence: past, present, and future. Adv Opt Article ID 945364. http://dx.doi.org/10.1155/2014/945364

  5. Aurzada F, Lévesque M, Maier M, Reisslein M (2014) FiWi access networks based on next-generation PON and Gigabit-class WLAN technologies: a capacity and delay analysis. IEEE/ACM Trans Networking 22(4):1176–1189

    Article  Google Scholar 

  6. Ali AM, Ellinas G, Erkan H, Hadjiantonis A, Dorsinville R (2010) On the vision of complete fixed-mobile convergence. J Lightwave Technol 28(16):2343–2357

    Article  Google Scholar 

  7. European Commission (2014) Digital agenda for Europe. http://europa.eu/pol/pdf/flipbook/en/digital_agenda_en.pdf

  8. Goertzel B, Goertzel T (eds) (2015) The end of the beginning: life, society and economy on the brink of the singularity kindle edition. Humanity+Press

    Google Scholar 

  9. Prasad R (2012) Future networks and technologies supporting innovative communications. In: Proceedings of the 3rd IEEE international conference on network infrastructure and digital content (IC-NIDC), Beijing, 21–23 Sept 2012. doi:10.1109/ICNIDC.2012.6418846

  10. The Economist Intelligence Unit (2014) The hyperconnected economy: how the growing interconnectedness of society is changing the landscape for business. http://go.sap.com/docs/download/2015/10/04e64342-457c-0010-82c7-eda71af511fa.pdf

  11. Vermesan O, Friess P (eds) (2015) Building the hyperconnected society—IoT research and innovation value chains, ecosystems and markets. River Publishers, Aalborg

    Google Scholar 

  12. Hamalainen S, Sanneck H, Sartori C (eds) (2011) LTE self-organising networks (SON): network management automation for operational efficiency. Wiley

    Google Scholar 

  13. GPP (2015) Technical specification 32.500 “telecommunication management; self-organizing networks (SON); concepts and requirements” Release 13

    Google Scholar 

  14. Sallent O, Pérez-Romero J, Sánchez-González J, Agustí R, Díaz-Guerra M, Henche D, Paul D (2011) A roadmap from UMTS optimization to LTE self-optimization. IEEE Commun Mag 49(6):172–182

    Article  Google Scholar 

  15. Peng M, Liang D, Wei Y, Li J, Chen HH (2013) Self-configuration and self-optimization in LTE-advanced heterogeneous networks. IEEE Commun Mag 51(5):36–45

    Article  Google Scholar 

  16. Andrade M et al (2011) Evaluating strategies for evolution of passive optical networks. IEEE Commun Mag 49(7):176–184

    Article  Google Scholar 

  17. Effenberger F et al (2007) An introduction to PON technologies. IEEE Commun Mag 45(3):S17–S25

    Article  Google Scholar 

  18. Kramer G (2005) Ethernet passive optical networks. McGraw-Hill

    Google Scholar 

  19. Effenberger F et al (2009) Next-generation PON—part II: candidate systems for next-generation PON. IEEE Commun Mag 47(11):50–57

    Article  Google Scholar 

  20. Zhang J et al (2009) Next-generation PONs: a performance investigation of candidate architectures for next-generation access stage 1. IEEE Commun Mag 47(8):49–57

    Article  Google Scholar 

  21. Kani JI et al (2009) Next generation PON—part 1: technology roadmap and general requirements. IEEE Commun Mag 47(11):43–49

    Article  Google Scholar 

  22. ITU-T (2013) G.987: 10-Gigabit-capable passive optical network (XG-PON) systems: Definitions, abbreviations and acronyms

    Google Scholar 

  23. Hajduczenia M, da Silva H, Monteiro P (2007) 10G EPON development process. In: Proceedings of the 9th international conference on transparent optical networks, vol 1, Rome, 1–5 July 2007. doi:10.1109/ICTON.2007.4296087

  24. Park SJ et al (2004) Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. IEEE J Lightwave Technol 22(11):2582–2591

    Article  Google Scholar 

  25. Wagner SS, Kobrinski H (1989) WDM applications in broadband telecommunication networks. IEEE Commun Mag 27(3):22–30

    Article  Google Scholar 

  26. Effenberger F, Lin H (2009) Backward compatible coexistence of PON systems. In: Proceedings of the conference on optical fiber communication, San Diego, CA, 22–26 March 2009

    Google Scholar 

  27. McCammon K, Wong S W (2007) Experimental validation of an access evolution strategy: smooth FTTP service migration path. In: Proceedings of the optical fiber communication and the national fiber optic engineers conference, Anaheim, 25–29 March 2007

    Google Scholar 

  28. Choi K et al (2007) An efficient evolution method from TDM-PON to next-generation PON. IEEE Photonics Technol Lett 19(9):647–649

    Article  Google Scholar 

  29. Chen J et al (2010) Cost vs. reliability performance study of fiber access network architectures. IEEE Commun Mag 48(2):56–65

    Article  Google Scholar 

  30. Kazovsky L et al (2007) Next-generation optical access network. IEEE J Lightwave Technol 25(11):3428–3442

    Article  Google Scholar 

  31. Shami A, Maier M, Assi C (eds) (2009) Broadband access networks, technologies and deployments. Springer

    Google Scholar 

  32. Kitayama K, Wang X, Wada N (2006) OCDMA over WDM PON-solution path to gigabit symmetric FTTH. IEEE J Lightwave Technol 24(4):1654–1662

    Article  Google Scholar 

  33. Fabrega JM, Vilabru L, Prat J (2008) Experimental demonstration of heterodyne phase-locked loop for optical homodyne PSK receivers in PONs. In: Proceedings of the 10th anniversary international conference on transparent optical networks, vol 1, pp 222–225, Athens, Greece, 22-26 June 2008

    Google Scholar 

  34. Cvijetic N (2012) OFDM for next-generation optical access networks. IEEE J Lightwave Technol 30(4):384–398

    Article  Google Scholar 

  35. Charbonnier B, Brochier N, Chanclou P (2011) (O)FDMA PON over a legacy 30dB ODN. In: Proceedings of the optical fiber communication conference and exposition, Los Angeles, 6–10 March 2011

    Google Scholar 

  36. Wong E (2012) Next-generation broadband access networks and technologies. J Lightwave Technol 30(4):597–608

    Article  Google Scholar 

  37. Sarigiannidis AG, Iloridou M, Nicopolitidis P, Papadimitriou G, Pavlidou FN, Sarigiannidis PG, Louta MD, Vitsas V (2015) Architectures and bandwidth allocation schemes for hybrid wireless-optical networks. IEEE Commun Surv Tutorials 17(1):427–468

    Article  Google Scholar 

  38. Raaf B et al (2011) Vision for beyond 4G broadband radio systems. In: Proceedings of the 22nd IEEE international symposium on personal, indoor and mobile radio communications, Toronto, Canada, pp 2369–2373, 11–14 Sept 2011

    Google Scholar 

  39. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082

    Article  Google Scholar 

  40. Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5G. IEEE Commun Mag 52(2):74–80

    Article  Google Scholar 

  41. EU Horizon 2020 (2015) Future of 5G networks. http://ec.europa.eu/digital-agenda/en/towards-5g

  42. Maier M (2014) Fiber-wireless (FiWi) broadband access networks in an age of convergence: past, present, and future. Adv Opt Article ID 945364. http://dx.doi.org/10.1155/2014/945364

  43. Ghazisaidi N, Maier M (2011) Fiber-wireless (FiWi) access networks: challenges and opportunities. IEEE Netw 25(1):36–42

    Article  Google Scholar 

  44. China Mobile Research Institute (2014) C-RAN white paper: the road towards Green Ran. http://labs.chinamobile.com/cran

  45. Checko A, Christiansen HL, Yan Ying, Scolari L, Kardaras G, Berger MS, Dittmann L (2015) Cloud RAN for mobile networks—a technology overview. IEEE Commun Surv Tutorials 17(1):405–426

    Article  Google Scholar 

  46. Wu J, Zhang Z, Hong Yu, Wen Yonggang (2015) Cloud radio access network (C-RAN): a primer. IEEE Netw 29(1):35–41

    Article  Google Scholar 

  47. Chih-Lin I, Huang J, Duan R, Chunfeng C, Jesse (Xiaogen) J, Lei L (2014) Recent progress on C-RAN centralization and cloudification. IEEE Access 2:1030–1039

    Google Scholar 

  48. ITU-T (2012) Recommendation Y.3011 framework of network virtualization for future networks

    Google Scholar 

  49. ITU-T (2014) Recommendation Y.3012 requirements of network virtualization for future networks

    Google Scholar 

  50. Baumgartner A, Reddy VS, Bauschert T (2015) Mobile core network virtualization: a model for combined virtual core network function placement and topology optimization. In: Proceedings of the 1st IEEE conference on network softwarization, London, 13–17 April 2015

    Google Scholar 

  51. Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tutorials 17(1):358–380

    Article  Google Scholar 

  52. ITU-T Recommendation Y.3011 (2012) Framework of network virtualization for future networks

    Google Scholar 

  53. ITU-T Recommendation Y.3001 (2011) Future networks: objectives and design goals

    Google Scholar 

  54. Kurzweil R (2005) The singularity is near: when humans transcend biology. Viking

    Google Scholar 

  55. Barnatt C (2016) A guide to the future. http://www.explainingthefuture.com/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Poulkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poulkov, V. (2016). Beyond the Next Generation Access. In: Prasad, R., Dixit, S. (eds) Wireless World in 2050 and Beyond: A Window into the Future!. Springer Series in Wireless Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42141-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42141-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42140-7

  • Online ISBN: 978-3-319-42141-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics