Skip to main content

Delivery of Biologically Active Molecules to Mitochondria

  • Chapter
  • First Online:
Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease

Abstract

Mitochondria are subcellular organelles that produce the energy necessary for cellular functions and metabolic processes such as oxidative phosphorylation, gluconeogenesis and fatty acid oxidation. These organelles also play a pivotal role in signaling pathways, cell survival and cell death. Due to these functional characteristics, mitochondria have become an attractive target for the delivery of drugs and biomolecules for a variety of mitochondrial dysfunctions. In order to efficiently deliver biological active molecules to mitochondria, mitochondria-targeted pharmaceutical nanocarriers and other strategies have been developed. Lipophilic cations like triphenylphosphonium (TPP), for example, are well-known for their selectivity to mitochondria and they are commonly incorporated into liposomes to carry drugs and antioxidants. Szeto-Chiller (SS) peptides are an alternative to lipophilic cations to deliver antioxidants to mitochondria, as these peptide antioxidants are also taken up by cells and accumulate within mitochondria. Dequalinium chloride based on its self-assembly capability and its strong affinity to mitochondria has also been used to deliver drugs and DNA in the form of DeQAlinium-based- lipoSOMES (DQAsomes). In this chapter, we describe the use of these strategies and their mechanisms to deliver biological active molecules to mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulda, S., Galluzzi, L., Kroemer, G.: Targeting mitochondria for cancer therapy. Nat. Rev. Drug Discov. 9, 447–464 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Toogood, P.L.: Mitochondrial drugs. Curr. Opin. Chem. Biol. 12, 457–463 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Szeto, H.H.: Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid. Redox Signal. 10, 601–620 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Liberman, E., Topaly, V., Tsofina, L., Jasaitis, A., Skulachev, V.: Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222, 1076–1078 (1969)

    Article  CAS  PubMed  Google Scholar 

  5. Bakeeva, L., et al.: Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim. Biophys. Acta, Bioenerg. 216, 13–21 (1970)

    Article  CAS  Google Scholar 

  6. Liberman, E., Skulachev, V.: Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim. Biophys. Acta, Bioenerg. 216, 30–42 (1970)

    Article  CAS  Google Scholar 

  7. Grinius, L., et al.: Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim. Biophys. Acta, Bioenerg. 216, 1–12 (1970)

    Article  CAS  Google Scholar 

  8. Johnson, L.V., Walsh, M.L., Chen, L.B.: Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. 77, 990–994 (1980)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horobin, R.W., Trapp, S., Weissig, V.: Mitochondriotropics: a review of their mode of action, and their applications for drug and DNA delivery to mammalian mitochondria. J. Control. Release 121, 125–136 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Murphy, M.P.: Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta, Bioenerg. 1777, 1028–1031 (2008)

    Article  CAS  Google Scholar 

  11. Armstrong, J.: Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol. 151, 1154–1165 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Starenki, D., Park, J.-I.: Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo. J. Clin. Endocrinol. Metab. 98, 1529–1540 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelso, G.F., et al.: Selective targeting of a redox-active ubiquinone to mitochondria within cells antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588–4596 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Snow, B.J., et al.: A double‐blind, placebo‐controlled study to assess the mitochondria‐targeted antioxidant MitoQ as a disease‐modifying therapy in Parkinson’s disease. Mov. Disord. 25, 1670–1674 (2010)

    Article  PubMed  Google Scholar 

  15. Boddapati, S.V., D’Souza, G.G., Erdogan, S., Torchilin, V.P., Weissig, V.: Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 8, 2559–2563 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. Malhi, S.S., et al.: Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int. J. Pharm. 432, 63–74 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Biswas, S., Dodwadkar, N.S., Deshpande, P.P., Torchilin, V.P.: Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control. Release 159, 393–402 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benien, P., et al.: Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect. J. Liposome Res. 26, 21–27 (2015)

    Article  PubMed  Google Scholar 

  19. Guzman-Villanueva, D., Mendiola, M.R., Nguyen, H.X., Weissig, V.: Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharm. Pharm. Sci. 2, 1–9 (2015)

    Google Scholar 

  20. Theodossiou, T.A., Sideratou, Z., Katsarou, M.E., Tsiourvas, D.: Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm. Res. 30, 2832–2842 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, J., et al.: The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials. 34, 3626–3638 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Biswas, S., Dodwadkar, N.S., Piroyan, A., Torchilin, V.P.: Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials. 33, 4773–4782 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Callahan, J., Kopecek, J.: Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug delivery carriers for membrane transduction and mitochondrial localization. Biomacromolecules. 7, 2347–2356 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma, A., et al.: Design an evaluation of multi-functional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules. 13, 239–252 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Marrache, S., Dhar, S.: Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 109, 16288–16293 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhuang, Q., et al.: Targeted surface-functionalized gold nanoclusters for mitochondrial imaging. Biosens. Biolectron. 55, 76–82 (2014)

    Article  CAS  Google Scholar 

  27. Marrache, S., Dhar, S.: Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc. Natl. Acad. Sci. USA 110, 9445–9459 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szeto, H.H.: Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J. 8, E277–E283 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berezowska, I., Lemieux, C., Chung, N.N., Zelent, B., Schiller, P.W.: Dansylated analogues of the opioid peptide [Dmt^1] DALDA: in vitro activity profiles and fluorescence parameters. Acta Biochim. Pol. 51, 107–113 (2004)

    CAS  PubMed  Google Scholar 

  30. Zhao, K., et al.: Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279, 34682–34690 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Birk, A.V., et al.: The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24, 1250–1261 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szeto, H.H., et al.: In vivo disposition of dermorphin analog (DALDA) in nonpregnant and pregnant sheep. J. Pharmacol. Exp. Ther. 284, 61–65 (1998)

    CAS  PubMed  Google Scholar 

  33. Zhao, K., Luo, G., Giannelli, S., Szeto, H.H.: Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem. Pharmacol. 70, 1796–1806 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, G., et al.: Profound spinal tolerance after repeated exposure to a highly selective u-opioid peptide agonist: role of δ-opioid receptors. J. Pharmacol. Exp. Ther. 302, 188–196 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Petri, S., et al.: Cell-permeable peptide antioxidants as novel therapeutic approach in a mouse model of amyotropic lateral sclerosis. J. Neurochem. 98, 1141–1148 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. Wu, D., Soong, Y., Zhao, G.-M., Szeto, H.H.: A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning. Am. J. Phys. Heart Circ. Phys. 283, H783–H791 (2002)

    CAS  Google Scholar 

  37. Song, W., et al.: A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Coron. Artery Dis. 16, 407–410 (2005)

    Article  PubMed  Google Scholar 

  38. Cho, S., et al.: A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J. Biol. Chem. 282, 4634–4642 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Havranek, S., et al.: Long-term prognostic impact of hyponatremia in the ST-elevation myocardial infarction. Scand. J. Clin. Lab. Invest. 71, 38–44 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Pathak, R.K., Kolishetti, N., Dhar, S.: Targeted nanoparticles in mitochondrial medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 315–329 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. Weissig, V., et al.: DQAsomes: a novel potential drug and gene delivery system made from dequalinium™. Pharm. Res. 15, 334–337 (1998)

    Article  CAS  PubMed  Google Scholar 

  42. Weissig, V., Torchilin, V.P.: Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv. Drug Deliv. Rev. 49, 127–149 (2001)

    Article  CAS  PubMed  Google Scholar 

  43. Weissig, V., Torchilin, V.P.: Towards mitochondrial gene therapy: DQAsomes as a strategy. J. Drug Target. 9, 1–13 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Lyrawati, D., Trounson, A., Cram, D.: Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm. Res. 28, 2848–2862 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, S., et al.: Towards mitochondria-specific delivery of apoptosis-inducing agents: DQAsomal incorporated paclitaxel. J. Drug Delivery Sci. Technol. 15, 81–86 (2005)

    Article  CAS  Google Scholar 

  46. Vaidya, B., et al.: Cell-selective mitochondrial targeting: a new approach for cancer therapy. Cancer Ther. 7, 141–148 (2009)

    CAS  Google Scholar 

  47. Zupančič, S., et al.: Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation. Mol. Pharm. 11, 2334–2345 (2014)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Guzman-Villanueva M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guzman-Villanueva, D., Weissig, V. (2016). Delivery of Biologically Active Molecules to Mitochondria. In: Buhlman, L. (eds) Mitochondrial Mechanisms of Degeneration and Repair in Parkinson's Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-42139-1_13

Download citation

Publish with us

Policies and ethics