Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 114))

Abstract

In this paper, we review and refine the main ideas for devising the so-called hybridizable discontinuous Galerkin (HDG) methods; we do that in the framework of steady-state diffusion problems. We begin by revisiting the classic techniques of static condensation of continuous finite element methods and that of hybridization of mixed methods, and show that they can be reinterpreted as discrete versions of a characterization of the associated exact solution in terms of solutions of Dirichlet boundary-value problems on each element of the mesh which are then patched together by transmission conditions across interelement boundaries. We then define the HDG methods associated to this characterization as those using discontinuous Galerkin (DG) methods to approximate the local Dirichlet boundary-value problems, and using weak impositions of the transmission conditions. We give simple conditions guaranteeing the existence and uniqueness of their approximate solutions, and show that, by their very construction, the HDG methods are amenable to static condensation. We do this assuming that the diffusivity tensor can be inverted; we also briefly discuss the case in which it cannot. We then show how a different characterization of the exact solution, gives rise to a different way of statically condensing an already known HDG method. We devote the rest of the paper to establishing bridges between the HDG methods and other methods (the old DG methods, the mixed methods, the staggered DG method and the so-called Weak Galerkin method) and to describing recent efforts for the construction of HDG methods (one for systematically obtaining superconvergent methods and another, quite different, which gives rise to optimally convergent methods). We end by providing a few bibliographical notes and by briefly describing ongoing work.

Published in LNCSE, vol. XX (2015), pp. 1–45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Arbogast, M.F. Wheeler, I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (2), 828–852 (1997). MR 1442940 (98g:65105)

    Google Scholar 

  2. D.N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO 19, 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  3. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Celiker, B. Cockburn, K. Shi, Hybridizable discontinuous Galerkin methods for Timoshenko beams. J. Sci. Comput. 44, 1–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Celiker, B. Cockburn, K. Shi, A projection-based error analysis of HDG methods for Timoshenko beams. Math. Comput. 81, 131–151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Cesmelioglu, B. Cockburn, Analysis of HDG methods for the Oseen equations. J. Sci. Comput. 55 (2), 392–431 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Chabaud, B. Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Chen, BDM mixed methods for a nonlinear elliptic problem. J. Comput. Appl. Math. 53 (2), 207–223 (1994). MR 1306126 (95i:65153)

    Google Scholar 

  10. Y. Chen, B. Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes. IMA J. Numer. Anal. 32, 1267–1293 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Y. Chen, B. Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: semimatching nonconforming meshes. Math. Comput. 83, 87–111 (2014)

    MathSciNet  MATH  Google Scholar 

  12. S.H. Christiansen, A. Gillette, Constructions of some minimal finite element systems, arXiv:1504.04670v1 (2015)

    Google Scholar 

  13. E. Chung, B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47 (5), 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Chung, B. Cockburn, G. Fu, The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal. 52, 915–932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Cockburn, J. Cui, An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions. Math. Comput. 81, 1355–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Cockburn, J. Cui, Divergence-free HDG methods for the vorticity-velocity formulation of the Stokes problem. J. Sci. Comput. 52, 256–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Cockburn, J. Gopalakrishnan, The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Cockburn, W. Qiu, Commuting diagrams for the TNT elements on cubes. Math. Comput. 83, 603–633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Cockburn, V. Quenneville-Bélair, Uniform-in-time superconvergence of HDG methods for the acoustic wave equation. Math. Comput. 83, 65–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Cockburn, F.-J. Sayas, The devising of symmetric couplings of boundary element and discontinuous Galerkin methods. IMA J. Numer. Anal. 32, 765–794 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Cockburn, F.-J. Sayas, Divergence-conforming HDG methods for Stokes flow. Math. Comput. 83, 1571–1598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Cockburn, K. Shi, Conditions for superconvergence of HDG methods for Stokes flow. Math. Comput. 82, 651–671 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Cockburn, K. Shi, Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)

    Article  MathSciNet  Google Scholar 

  24. B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Cockburn, C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Cockburn, W. Zhang, A posteriori error estimates for HDG methods. J. Sci. Comput. 51 (3), 582–607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Cockburn, W. Zhang, A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Cockburn, W. Zhang, An a posteriori error estimate for the variable-degree Raviart-Thomas method. Math. Comput. 83, 1063–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Cockburn, D.A. Di Pietro, A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. (to appear)

    Google Scholar 

  30. B. Cockburn, B. Dong, J. Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Cockburn, B. Dong, J. Guzmán, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems. J. Sci. Comput. 40, 141–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Cockburn, B. Dong, J. Guzmán, M. Restelli, R. Sacco, Superconvergent and optimally convergent LDG-hybridizable discontinuous Galerkin methods for convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Cockburn, J. Guzmán, S.-C. Soon, H.K. Stolarski, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47, 2686–2707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Cockburn, J. Guzmán, H. Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Cockburn, J. Gopalakrishnan, F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Cockburn, J. Gopalakrishnan, N.C. Nguyen, J. Peraire, F.-J. Sayas, Analysis of an HDG method for Stokes flow. Math. Comput. 80, 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Cockburn, J. Guzmán, F.-J. Sayas, Coupling of Raviart-Thomas and hybridizable discontinuous Galerkin methods with BEM. SIAM J. Numer. Anal. 50, 2778–2801 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Cockburn, W. Qiu, K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81, 1327–1353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Cockburn, W. Qiu, K. Shi, Conditions for superconvergence of HDG methods on curvilinear elements for second-order elliptic problems. SIAM J. Numer. Anal. 50, 1417–1432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Cockburn, F.-J. Sayas, M. Solano, Coupling at a distance HDG and BEM. SIAM J. Sci. Comput. 34, A28–A47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Cockburn, O. Dubois, J. Gopalakrishnan, S. Tan, Multigrid for an HDG method. IMA J. Numer. Anal. 34 (4), 1386–1425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Cockburn, G. Fu, F.J. Sayas, Superconvergence by M-decompositions: general theory for diffusion problems. Math. Comput. (to appear)

    Google Scholar 

  44. B. Cockburn, R. Nochetto, W. Zhang, Contraction property of adaptive hybridizable discontinuous Galerkin methods. Math. Comput. 85, 1113–1141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Cockburn, G. Fu, M.A. Sanchez-Uribe, C. Xiong, Supercloseness of two formulations of DG, HDG and mixed methods (in preparation)

    Google Scholar 

  46. D.A. Di Pietro, A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  Google Scholar 

  47. D.A. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris Ser. I 353, 31–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. D.A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. D.A. Di Pietro, A. Ern, S. Lemaire, Arbitrary-order mixed method for heterogeneous anisotropic diffusion on general meshes HAL Id: hal-00918482 (2015)

    Google Scholar 

  50. Y. Efendiev, R. Lazarov, K. Shi, A multiscale HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces. SINUM 53 (1), 342–369 (2015)

    MathSciNet  MATH  Google Scholar 

  51. R. Eymard, T. Gallouët, R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (4), 1009–1043 (2010)

    MATH  Google Scholar 

  52. B.M. Fraejis de Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis, ed. by O.C. Zienkiewicz, G. Holister (Wiley, New York, 1977), pp. 145–197

    Google Scholar 

  53. G. Fu, B. Cockburn, H.K. Stolarski, Analysis of an HDG method for linear elasticity. Int. J. Numer. Methods Eng. 102, 551–575 (2015)

    Article  MathSciNet  Google Scholar 

  54. Z. Fu, L.F. Gatica, F.-J. Sayas, Algorithm 494: MATLAB tools for HDG in three dimensions. ACM. Trans. Math. Softw. 41, 21 pp. (2015). Art. No. 20

    Google Scholar 

  55. R.J. Guyan, Reduction of stiffness and mass matrices. J. Am. Inst. Aronaut. Astronaut. 3, 380 (1965)

    Article  Google Scholar 

  56. S. Güzey, B. Cockburn, H.K. Stolarski, The embedded discontinuous Galerkin methods: application to linear shells problems. Int. J. Numer. Methods Eng. 70, 757–790 (2007)

    Article  MATH  Google Scholar 

  57. C. Harder, D. Paredes, F. Valentin, On a multi scale hybrid-mixed method for advective-reactive dominated problems with heterogenous coefficients. Multiscale Model. Simul. 13 (2), 491–518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. L.N.T. Huynh, N.C. Nguyen, J. Peraire, B.C. Khoo, A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Methods Eng. 93, 183–200 (2013)

    Article  MathSciNet  Google Scholar 

  59. H. Kabaria, A. Lew, B. Cockburn, A hybridizable discontinuous Galerkin formulation for nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)

    Article  MathSciNet  Google Scholar 

  60. R.M. Kirby, S.J. Sherwin, B. Cockburn, To HDG or to CG: a comparative study. J. Sci. Comput. 51 (1), 183–212 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Koebbe, A computationally efficient modification of mixed finite element methods for flow problems with full transmissivity tensors. Numer. Methods Partial Differ. Equ. 9 (4), 339–355 (1993). MR 1223251 (94c:76054)

    Google Scholar 

  62. C. Lehrenfeld, Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Diplomigenieur Rheinisch-Westfalishen Technischen Hochchule Aachen (2010)

    Google Scholar 

  63. C. Lehrenfeld, J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. ASC Report No. 27 (2015)

    Google Scholar 

  64. D. Moro, N.C. Nguyen, J. Peraire, A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Eng. 91, 950–970 (2012)

    Article  MathSciNet  Google Scholar 

  65. L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes. Int. J. Numer. Anal. Model. 12, 31–53 (2015)

    MathSciNet  MATH  Google Scholar 

  66. L. Mu, J. Wang, X. Ye, A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. N.C. Nguyen, J. Peraire, Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231, 5955–5988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 228, 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. N.C. Nguyen, J. Peraire, B. Cockburn, A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45, 215–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  72. N.C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations (AIAA Paper 2010-362), in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, FL, January 2010

    Google Scholar 

  73. N.C. Nguyen, J. Peraire, B. Cockburn, High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  74. N.C. Nguyen, J. Peraire, B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. N.C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  76. I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. (published online on December 2014)

    Google Scholar 

  77. J. Peraire, N.C. Nguyen, B. Cockburn, A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations (AIAA Paper 2010-363), in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, FL, January 2010

    Google Scholar 

  78. W. Qiu, K. Shi, An HDG method for convection-diffusion equations. J. Sci. Comput. 66, 346–357 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. W. Qiu, K. Shi, An HDG method for linear elasticity with strongly symmetric stresses (submitted)

    Google Scholar 

  80. S. Rhebergen, B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231, 4185–4204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  81. S. Rhebergen, B. Cockburn, Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, in The Courant-Friedrichs-Lewy (CFL) Condition (Birkhäuser/Springer, New York, 2013), pp. 45–63

    MATH  Google Scholar 

  82. S. Rhebergen, B. Cockburn, J.J.W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 339–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  83. S. Rjasanow, S. Weißer, Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50, 2357–2378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  84. J. Schöberl, private communication, 2015. The 2012 pdf file of J. Schöberl’s Oberwolfach talk can be found in http://www.asc.tuwien.ac.at/~schoeberl/wiki/index.php/Talks

  85. S.-C. Soon, Hybridizable discontinuous Galerkin methods for solid mechanics. Ph.D. thesis, University of Minnesota, Minneapolis, 2008

    Google Scholar 

  86. S.-C. Soon, B. Cockburn, H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Eng. 80 (8), 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Ten Eyck, A. Lew, Discontinuous Galerkin methods for non-linear elasticity. Int. J. Numer. Methods Eng. 67, 1204–1243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Wang, X. Ye, A weak Galerkin finite element method for second order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 289, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. S. Weißer, Arbitrary order Trefftz-like basis functions on polygonal meshes and realization in BEM-based FEM. Comput. Math. Appl. 67, 1390–1406 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Henryk K. Stolarski for providing the earliest reference on static condensation. He would also thank Yanlai Chen, Mauricio Flores, Guosheng Fu, Matthias Maier and an anonymous referee for feedback leading to a better presentation of the material in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Cockburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cockburn, B. (2016). Static Condensation, Hybridization, and the Devising of the HDG Methods. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41640-3_5

Download citation

Publish with us

Policies and ethics