Skip to main content

The Crystalline State of Archaeological Bone Material

  • Chapter
  • First Online:
Across the Alps in Prehistory

Abstract

Isotope studies on archaeological bone mineral require a validation of the investigated sample material. Diagenetic alteration or contaminated bone mineral should be recognized as such and not be used for conclusions requiring pristine material. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) provide two complementary tools to characterize the state of the bone mineral. While IR measurements are easy and rapid, their interpretation is still largely empirical. Modern XRD analysis is more demanding with respect to experiment and data evaluation, but it is based on rigorous theoretical modelling of the observed data. Our study involved both uncremated animal bone samples from the alpine region covering ages from 7600 to 550 years before present, as well as cremated human bone remains in comparison with experimentally cremated bovine bone. All samples were mechanically cleaned to remove soil, and inner and outer periosteal surfaces were mechanically removed. We avoided visually decomposed bones completely. The mineralogic state of the thus cleaned, uncremated samples showed only minor systematic changes with archaeologic age. The changes are most pronounced for the lattice parameter and crystalline domain size in the short dimension of the original bone-apatite platelets. The long direction corresponding to the crystallographic c-axis of the apatite appears almost unaffected. We conclude that in the investigated samples, there is only a minor diagenetic alteration of the original bone mineral, possibly related to exchange of carbonate by hydroxyl or fluorine.

From annealing experiments with bovine femur bone material at different temperatures for 1 h annealing time, we established calibration curves to be used to estimate cremation temperatures of bones based on FTIR spectra and X-ray diffractograms. While the evaluation of the diffractograms is rigorously based on a physical model, the evaluation of spectral components in FTIR spectra is empirical. The experiments indicate that original bone apatite contains little–if any–OH such that it is carbonate-H2O-apatite (rather than hydroxyapatite), and with increasing temperature, water and carbonate leave the material, and from 600 °C, hydroxyapatite is formed with increasing purity and crystallite size with increasing temperature. The analysis of some cremated bones from Urnfield Culture sites of Eching and Zuchering, southern Bavaria, clearly indicated that the archaeological cremated bones are inhomogeneous materials where different parts of the samples were subjected to different cremation temperatures and/or times at temperature within fractions of centimetres. This can be attributed to the conditions in the pile of burning logs and burning tissue. Nevertheless, a fair estimation of cremation temperatures is certainly possible even where the FTIR approach and the XRD approach still do not have a full mutual consistency. Future work needs to address the anatomical variability of original bone material within and between species in much more detail than is known at present. Beyond the well-defined temperature/time conditions in furnace annealing experiments, cremation experiments with bone material analyses must also be done in more realistic conditions as they occur in a funeral pyre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Daulton TL, Genin GM, Lipner J, Pasteris JD, Wopenka B, Thomopoulos S (2012) The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J Royal Soc Interface 9:1774–1786

    Article  CAS  Google Scholar 

  • Balan E, Delattre S, Roche D, Segalen L, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Brouder C, Salje EKH (2011) Line-broadening effects in the powder infrared spectrum of apatite. Phys Chem Miner 38:111–122

    Article  CAS  Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882

    Article  Google Scholar 

  • Cuisinier F, Bres EF, Hemmerle J, Voegel JC, Frank RM (1987) Transmission electron microscopy of lattice planes in human alveolar bone apatite crystals. Calcif Tissue Int 40:332–338

    Article  CAS  PubMed  Google Scholar 

  • de Keijser TH, Langford JI, Mittemeijer EJ, Vogels ABP (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Crystallogr 15:308–314

    Article  Google Scholar 

  • de Leeuw NH (2010) Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem 20:5376–5389

    Article  Google Scholar 

  • Elliot JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (Hrsg) Phosphates: geochemical, geobiological and material importance. Reviews in mineralogy and geochemistry, vol 48. Mineralogical Society of America, Washington, DC, pp 631–672

    Google Scholar 

  • Enzo S, Bazzoni M, Mazzarello V, Piga G, Bandiera P, Melis P (2007) A study by thermal treatment and X-ray powder diffraction on burnt fragmented bones from tombs II, IV and IX belonging to the hypogeic necropolis of “Sa Figu” near Ittiri, Sassari (Sardinia, Italy). J Archaeol Sci 34:1731–1737

    Article  Google Scholar 

  • Galeano S, García-Lorenzo ML (2014) Bone mineral change during experimental calcination: an X-ray diffraction study. J Forensic Sci 59:1602–1606

    Article  CAS  PubMed  Google Scholar 

  • Gernaey AM, Waite ER, Collins MJ, Craig OE, Sokol RJ (2001) Survival and interpretation of archaeological proteins. In Brothwell DR, Pollard AM (Hrsg) Handbook of archaeological science. Wiley, Chichester: 323–329

    Google Scholar 

  • Gonzalez-Diaz PF, Hidalgo A (1976) Infrared spectra of calcium apatites. Spectrochim Acta A Mol Spectrosc 32A:1119–1124

    Article  CAS  Google Scholar 

  • Gonzalez-Diaz PF, Santos M (1977) On the hydroxyl ions in apatites. J Solid State Chem 22:193–199

    Article  CAS  Google Scholar 

  • Grunenwald A, Keyser C, Sautereau AM, Crubézy E, Ludes B, Drouet C (2014) Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing. Anal Bioanal Chem 406:4691–4704

    Article  CAS  PubMed  Google Scholar 

  • Grupe G, Harbeck M, McGlynn GC (2015) Prähistorische Anthropologie. Springer, Berlin

    Book  Google Scholar 

  • Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Int 204:191–200

    Article  CAS  PubMed  Google Scholar 

  • Hedges REM (2002) Bone diagenesis: an overview of precesses. Archaeometry 44:319–328

    Article  CAS  Google Scholar 

  • Ikoma T, Yamazaki A, Nakamura S, Akao M (1999) Preparation and structure refinement of monoclinic hydroxyapatite. J Solid State Chem 144:272–276

    Article  CAS  Google Scholar 

  • Jäger C, Welzel T, Meyer-Zaika W, Epple M (2006) A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn Reson Chem 44:573–580

    Article  PubMed  Google Scholar 

  • Landis WJ, Jacquet R (2013) Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93:329–337

    Article  CAS  PubMed  Google Scholar 

  • Lebon M, Reiche I, Frohlich F, Bahain J, Falgueres C (2008) Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν1 and ν3 PO4. Anal Bioanal Chem 392:1479–1488

    Article  CAS  PubMed  Google Scholar 

  • Lee-Thorp J, Sponheimer M (2003) Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. J Anthropol Archaeol 23:208–216

    Article  Google Scholar 

  • LeGeros RZ, Trautz OR, Legeros JP, Klein E, Shirra WP (1967) Apatite crystallites: effects of carbonate on morphology. Science 155:1409–1411

    Article  CAS  PubMed  Google Scholar 

  • LeGeros RZ, Trautz OR, Legeros JP, Klein E (1968) Carbonate substitution in the apatite structure. Bull Soc Chim Fr 4:1712–1718

    Google Scholar 

  • Loong CK, Rey C, Kuhn LT, Combes C, Wu Y, Chen SH, Glimcher MJ (2000) Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone 26:599–602

    Article  CAS  PubMed  Google Scholar 

  • McKinley J (2016) Complexities of the ancient mortuary rite of cremation: an osteoarchaeological conundrum. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 17–41

    Chapter  Google Scholar 

  • Mittemeijer EJ, Welzel U (eds) (2012) Modern diffraction methods. Wiley-VCH, Weinheim, 528p

    Google Scholar 

  • Munro LE, Longstaffe FJ, White CD (2008) Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone (Beyond documenting diagenesis: the fifth international bone diagenesis workshop). Palaeogeogr Palaeoclimatol Palaeoecol 266:142–150

    Article  Google Scholar 

  • Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone I: the effects of site environments. J Archaeol Sci 27:1139–1150

    Article  Google Scholar 

  • Nielsen-Marsh CM, Gernaey A, Turner-Walker G, Hedges REM, Pike A, Collins MJ (2000) The chemical degradation of bone. In: Cox M, Mays S (eds) Human osteology in archaeology and forensic science. Greenwich Medical Media, London, pp. 439–454

    Google Scholar 

  • Olsen J, Heinemeier J, Bennike P, Krause C, Hornstrup KM, Thrane H (2008) Characterisation and blind testing of radiocarbon dating of cremated bone. J Archaeol Sci 35:791–800

    Article  Google Scholar 

  • Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen AM, Silva MJ (2004) Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials 25:229–238

    Article  CAS  PubMed  Google Scholar 

  • Pecharsky VK, Zavalij PY (2003) Fundamentals of powder diffraction and structural characterization of materials. Springer, New York, 741p

    Google Scholar 

  • Pedone A, Corno M, Civalleri B, Malavasi G, Menziani C, Segrea U, Ugliengo P (2007) An ab initio parameterized interatomic force field for hydroxyapatite. J Mater Chem 17:2061–2068

    Article  CAS  Google Scholar 

  • Person A, Bocherens H, Saliege JF, Paris F, Zeitoun V, Gerard M (1995) Early diagenetic evolution of bone phosphate—an X-ray diffractometry analysis. J Archaeol Sci 22:211–221

    Article  Google Scholar 

  • Peters F, Schwarz K, Epple M (2000) The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta 361:131–138

    Article  CAS  Google Scholar 

  • Piga G, Malgosa A, Thompson TJU, Enzo S (2008) A new calibration of the XRD technique for the study of archaeological burned human remains. J Archaeol Sci 35:2171–2178

    Article  Google Scholar 

  • Piga G, Thompson TJU, Malgosa A, Enzo S (2009a) The potential of X-Ray diffraction in the analysis of burned remains from forensic contexts. J Forensic Sci 54:3534–3539

    Article  Google Scholar 

  • Piga G, Santos-Cubedo A, Moya Sola S, Brunetti A, Malgosa A, Enzo S (2009b) An X-ray diffraction (XRD) and X-ray fluorescence (XRF) investigation in human and animal fossil bones from Holocene to Middle Triassic. J Arch Sci 36:857–1868

    Article  Google Scholar 

  • Piga G, Solinas G, Thompson TJU, Brunetti A, Malgosa A, Enzo S (2013) Is X-ray diffraction able to distinguish between animal and human bones? J Archaeol Sci 40:778–785

    Article  CAS  Google Scholar 

  • Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97

    Article  Google Scholar 

  • Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  CAS  PubMed  Google Scholar 

  • Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey C, Combes C, Drouet C, Cazalbou S, Grossin D, Brouillet F, Sarda S (2014) Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Prog Cryst Growth Charact Mater 60:63–73

    Article  CAS  Google Scholar 

  • Rey C, Miquel JL, Facchini L, Legrand AP, Glimcher MJ (1995) Hydroxyl groups in bone mineral. Bone 16:583–586

    Article  CAS  PubMed  Google Scholar 

  • Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258

    Article  CAS  PubMed  Google Scholar 

  • Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the v4PO4 domain. Calcif Tissue Int 46:384–394

    Article  CAS  PubMed  Google Scholar 

  • Reznikov N, Shahar R, Weiner S (2014) Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104

    Article  CAS  PubMed  Google Scholar 

  • Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  CAS  PubMed  Google Scholar 

  • Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  • Rodriguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69

    Article  CAS  Google Scholar 

  • Rodriguez-Carvajal J, Roisnel T (2004) Line broadening analysis using FullProf: determination of microstructural properties. Mater Sci Forum 443:123–126

    Article  Google Scholar 

  • Rogers KD, Beckett S, Kuhn S, Chamberlain A, Clement J (2010) Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeogr Palaeoclimatol Palaeoecol 296:125–129

    Article  Google Scholar 

  • Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23:2577–2585

    Article  CAS  PubMed  Google Scholar 

  • Schmahl WW, Kocis B, Toncala A, Grupe GJ (2016) Mineralogic characterisation of archaeologic bone. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 17–41

    Google Scholar 

  • Schurr MR, Hayes RG, Cook DC (2008) Thermally induced changes in the stable carbon and nitrogen isotope ratios of charred bones. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic Press, London, pp 95–108

    Chapter  Google Scholar 

  • Schwarcz HP, McNally EA, Botton GA (2014) Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J Struct Biol 188:240–248

    Article  CAS  PubMed  Google Scholar 

  • Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta 54:2433–2438

    Article  CAS  Google Scholar 

  • Shinomiya T, Shinomiya K, Orimoto C, Minami T, Tohno Y, Yamada MO (1998) In- and out-flows of elements in bones embedded in reference soils. Forensic Sci Int 98:109–118

    Article  CAS  PubMed  Google Scholar 

  • Sillen A (1989) Diagenesis of the inorganic phase of cortical bone. In Price TD (Hrsg) The chemistry of prehistoric human bone. Cambridge University Press, New York, pp 211–229

    Google Scholar 

  • Sponheimer M, de Ruiter D, Lee-Thorp J, Späth A (2005) Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. J Hum Evol 48:147–156

    Article  PubMed  Google Scholar 

  • Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G (2008) Bone diagenesis: new data from infrered spectroscopy and X-ray diffraction. Palaeogeogr Palaeoclimatol Palaeoecol 266:168–174

    Article  Google Scholar 

  • Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237

    Article  Google Scholar 

  • Surovell TA, Stiner M (2001) Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642

    Article  Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al203. J Appl Crystallogr 20:79–83

    Article  CAS  Google Scholar 

  • Tonegawa T, Ikoma T, Yoshioka T, Hanagata N, Tanaka J (2010) Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J Mater Sci 45:2419–2426

    Article  CAS  Google Scholar 

  • Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167

    Article  Google Scholar 

  • Tütken T, Vennemann TW, Pfretzschner H-U (2008) Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeogr Palaeoclimatol Palaeoecol 266:254–268

    Article  Google Scholar 

  • Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. In Pinhasi R, Mays S (Hrsg) Advances in human paleopathology. Wiley, Chichester, pp 3–29

    Google Scholar 

  • Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23:2593–2606

    Article  CAS  PubMed  Google Scholar 

  • Wahl J (1981) Beobachtungen zur Verbrennung menschlicher Leichname. Archäologisches Korrespondenzblatt 11:271–279

    Google Scholar 

  • Wang Y, Von Euw S, Fernandes FM, Cassaignon S, Selmane M, Laurent G, Pehau-Arnaudet G, Coelho C, Bonhomme-Coury L, Giraud-Guille M-M, Babonneau F, Azaïs T, Nassif N (2013) Water-mediated structuring of bone apatite. Nat Mater 12:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14:23–36

    Article  CAS  PubMed  Google Scholar 

  • Weiner S, Bar-Yosef O (1990) State of preservation of bones from the prehistoric sites in the near East: a survey. J Archaeol Sci 17:187–196

    Article  Google Scholar 

  • Weiner S, Goldberg P, Bar-Yosef O (1993) Bone preservation in Kebara Cave, Israel using on-site Fourier-transform infrared spectroscopy. J Archaeol Sci 20:613–627

    Article  Google Scholar 

  • Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255

    Article  CAS  PubMed  Google Scholar 

  • Wilson RM, Elliot JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414

    Article  CAS  Google Scholar 

  • Wilson RM, Elliton JC, Dowker SEP, Rodriguez-Lorenzo LM (2005) Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials 26:1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  Google Scholar 

  • Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944

    Article  Google Scholar 

  • Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42:476–482

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Balan E, Gervais C, Ségalen L, Blanchard M, Lazzeri M (2014) Theoretical study of the local charge compensation and spectroscopic properties of B-type carbonate defects in apatite. Phys Chem Miner 4:347–359

    Article  Google Scholar 

  • Yi H, Balan E, Gervais C, Segalen L, Fayon F, Roche D, Person A, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Babonneau F (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft, DFG, for financial support in Forschergruppe FOR1670, projects SCHM930/12-1 and GR959/21-1 and 20-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang W. Schmahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schmahl, W.W., Kocsis, B., Toncala, A., Wycisk, D., Grupe, G. (2017). The Crystalline State of Archaeological Bone Material. In: Grupe, G., Grigat, A., McGlynn, G. (eds) Across the Alps in Prehistory. Springer, Cham. https://doi.org/10.1007/978-3-319-41550-5_4

Download citation

Publish with us

Policies and ethics