Skip to main content

Qualification and Verification of Protein Biomarker Candidates

  • Chapter
  • First Online:
Modern Proteomics – Sample Preparation, Analysis and Practical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 919))

Abstract

The importance of biomarkers has long been recognized by the public, scientific community, and industry. Yet despite extensive efforts and funding investments in biomarker discovery, only 109 protein biomarkers in plasma or serum were approved by the US Food and Drug Administration throughout 2008 (Anderson NL. Clin Chem 56:177–185, 2010), and even fewer protein biomarkers are currently used routinely in the clinic. In recent years, the introduction of new protein biomarkers approved by the US Food and Drug Administration has fallen to an average of 1.5 per year (a median of only 1 per year) (Anderson NL. Clin Chem 56:177–185, 2010). The low efficiency of biomarker development is due to several reasons, including the poor quality of clinical samples, the gap between subjective clinical definition of a disease and objective protein measurements, and high false discovery rate of differentially expressed proteins identified in the initial discovery phase (Rifai N, Gillette MA, Carr SA. Nat Biotechnol 24:971–983, 2006). It has become clear that the vast majority of differentially expressed proteins identified in the discovery phase will ultimately fail as useful clinical biomarkers, and only few true positive candidates can move through the biomarker development pipeline. Isolation of true biomarkers from the large pool of differentially expressed proteins identified in the discovery phase becomes the greatest challenge and the bottleneck in most biomarker pipelines. To succeed, after the initial discovery study (see Chap. 20), the authenticity of biomarker candidates need to be tested in a pilot study with high throughput, high accuracy and reasonable cost. This essential process is addressed by qualification and verification phase of the biomarker development pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

All-ion fragmentation

AIMS:

Accurate inclusion mass screening

AQUA:

absolute quantification peptides standard

CART:

classification and regression trees

CE:

capillary electrophoresis

CFD:

complement factor D

CV:

coefficient of variation

DDA-MS/MS:

data-dependent MS/MS acquisition

DIA-MS/MS:

Data-independent MS/MS acquisition

ELISA:

Enzyme-linked immunosorbent assay

FDR:

false positive rate

FWHM:

full width at half maximum

HCD:

higher energy C-trap dissociation

HPLC:

high performance liquid chromatography

HR/AM:

high resolution and mass accuracy

IPed:

immuno-precipitated

LC:

liquid chromatography

LLOQ:

lower limit of quantification

LOD:

limit of detection

MARS:

multivariate adaptive regression splines

MS:

mass spectrometry

MS/MS:

tandem mass spectrometry

PAcIFIC:

Precursor acquisition independent from ion count

PRM:

parallel reaction monitoring

QCAT:

concatemer of standard peptides

QQQ-MS:

triple quadrupole mass spectrometry

SAM:

significance analysis of microarray

SEC:

size-exclusive chromatography

SID:

stable isotope dilution

SISCAPA:

stable isotope-labeled standards with capture by anti-peptide antibodies

SOPs:

standard operating protocols

SRM:

selected reaction monitoring

SWATH:

Sequential window acquisition of all theoretical mass spectra.

References

  1. Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185

    Article  CAS  PubMed  Google Scholar 

  2. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  CAS  PubMed  Google Scholar 

  3. Spicer V, Grigoryan M, Gotfrid A, Standing KG, Krokhin OV (2010) Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC. Anal Chem 82:9678–9685

    Article  CAS  PubMed  Google Scholar 

  4. Roobol MJ, Carlsson SV (2013) Risk stratification in prostate cancer screening. Nat Rev Urol 10:38–48

    Article  CAS  PubMed  Google Scholar 

  5. Del Mastro L, Lambertini M, Bighin C, Levaggi A, D’Alonzo A, Giraudi S, Pronzato P (2012) Trastuzumab as first-line therapy in HER2-positive metastatic breast cancer patients. Expert Rev Anticancer Ther 12:1391–1405

    Article  PubMed  Google Scholar 

  6. Carr SA, Anderson L (2008) Protein quantification through targeted mass spectrometry: the way out of biomarker purgatory? Clin Chem 54:1749–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoofnagle AN, Wener MH (2009) The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods 347:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Krastins B, Prakash A, Sarracino DA, Nedelkov D, Niederkofler EE, Kiernan UA, Nelson R, Vogelsang MS, Vadali G, Garces A, Sutton JN, Peterman S, Byram G, Darbouret B, Perusse JR, Seidah NG, Coulombe B, Gobom J, Portelius E, Pannee J, Blennow K, Kulasingam V, Couchman L, Moniz C, Lopez MF (2013) Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem 46:399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100:6940–6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587–589

    Article  CAS  PubMed  Google Scholar 

  11. Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029–1043

    Article  CAS  PubMed  Google Scholar 

  12. Dupuis A, Hennekinne JA, Garin J, Brun V (2008) Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics 8:4633–4636

    Article  CAS  PubMed  Google Scholar 

  13. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149

    Article  CAS  PubMed  Google Scholar 

  14. Zhao Y, Brasier AR (2013) Applications of selected reaction monitoring (SRM)-mass spectrometry (MS) for quantitative measurement of signaling pathways. Methods 61:313–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Tian B, Edeh CB, Brasier AR (2013) Quantification of the dynamic profiles of the innate immune response using multiplex selected reaction monitoring-mass spectrometry. Mol Cell Proteomics 12:1513–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Widen SG, Jamaluddin M, Tian B, Wood TG, Edeh CB, Brasier AR (2011) Quantification of activated NF-kappaB/RelA complexes using ssDNA aptamer affinity-stable isotope dilution-selected reaction monitoring-mass spectrometry. Mol Cell Proteomics 10:M111 008771

    Article  PubMed  PubMed Central  Google Scholar 

  17. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak MY, Hengartner MO, Aebersold R (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8:430–435

    Article  CAS  PubMed  Google Scholar 

  18. Abbatiello SE, Mani DR, Keshishian H, Carr SA (2010) Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem 56:291–305

    Article  CAS  PubMed  Google Scholar 

  19. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mead JA, Bianco L, Ottone V, Barton C, Kay RG, Lilley KS, Bond NJ, Bessant C (2009) MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol Cell Proteomics 8:696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martin DB, Holzman T, May D, Peterson A, Eastham A, Eng J, McIntosh M (2008) MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments. Mol Cell Proteomics 7:2270–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherwood CA, Eastham A, Lee LW, Peterson A, Eng JK, Shteynberg D, Mendoza L, Deutsch EW, Risler J, Tasman N, Aebersold R, Lam H, Martin DB (2009) MaRiMba: a software application for spectral library-based MRM transition list assembly. J Proteome Res 8:4396–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krokhin OV, Spicer V (2010) Predicting peptide retention times for proteomics. Curr Protoc Bioinformatics. Wiley

    Google Scholar 

  24. Brusniak MY, Kwok ST, Christiansen M, Campbell D, Reiter L, Picotti P, Kusebauch U, Ramos H, Deutsch EW, Chen J, Moritz RL, Aebersold R (2011) ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry. BMC Bioinf 12:78

    Article  Google Scholar 

  25. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS, Mendoza L, Kusebauch U, Brusniak MY, Huttenhain R, Schiess R, Selevsek N, Aebersold R, Moritz RL (2012) PASSEL: the PeptideAtlas SRMexperiment library. Proteomics 12:1170–1175

    Article  CAS  PubMed  Google Scholar 

  27. Huttenhain R, Soste M, Selevsek N, Rost H, Sethi A, Carapito C, Farrah T, Deutsch EW, Kusebauch U, Moritz RL, Nimeus-Malmstrom E, Rinner O, Aebersold R (2012) Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med 4:142ra194

    Article  Google Scholar 

  28. Kelly RT, Page JS, Zhao R, Qian WJ, Mottaz HM, Tang K, Smith RD (2008) Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal Chem 80:143–149

    Article  CAS  PubMed  Google Scholar 

  29. Page JS, Tang K, Kelly RT, Smith RD (2008) Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Anal Chem 80:1800–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J (2009) Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nondepleted human serum. Anal Chem 81:9343–9352

    Article  CAS  PubMed  Google Scholar 

  31. Jeudy J, Salvador A, Simon R, Jaffuel A, Fonbonne C, Leonard JF, Gautier JC, Pasquier O, Lemoine J (2014) Overcoming biofluid protein complexity during targeted mass spectrometry detection and quantification of protein biomarkers by MRM cubed (MRM3). Anal Bioanal Chem 406:1193–1200

    Article  CAS  PubMed  Google Scholar 

  32. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-Orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475–1488

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leinenbach A, Pannee J, Dulffer T, Huber A, Bittner T, Andreasson U, Gobom J, Zetterberg H, Kobold U, Portelius E, Blennow K, proteins, I. S. D. W. G. o. C. (2014) Mass spectrometry-based candidate reference measurement procedure for quantification of amyloid-beta in cerebrospinal fluid. Clin Chem 60:987–994

    Article  CAS  PubMed  Google Scholar 

  35. Gallien S, Bourmaud A, Kim SY, Domon B (2014) Technical considerations for large-scale parallel reaction monitoring analysis. J Proteome 100:147–159

    Article  CAS  Google Scholar 

  36. Jaffe JD, Keshishian H, Chang B, Addona TA, Gillette MA, Carr SA (2008) Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol Cell Proteomics 7:1952–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B (2008) An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 7:2138–2150

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmidt A, Claassen M, Aebersold R (2009) Directed mass spectrometry: towards hypothesis-driven proteomics. Curr Opin Chem Biol 13:510–517

    Article  CAS  PubMed  Google Scholar 

  39. Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JI (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–1695

    Article  CAS  PubMed  Google Scholar 

  41. Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45

    Article  CAS  PubMed  Google Scholar 

  42. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, Goodlett DR (2009) Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81:6481–6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Geiger T, Cox J, Mann M (2010) Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Huttenhain R, Surinova S, Gillet LC, Mouritsen J, Brunner R, Navarro P, Aebersold R (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13:1247–1256

    Article  CAS  PubMed  Google Scholar 

  46. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deutsch EW (2010) The PeptideAtlas project. Methods Mol Biol 604:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Y, Huttenhain R, Collins B, Aebersold R (2013) Mass spectrometric protein maps for biomarker discovery and clinical research. Expert Rev Mol Diagn 13:811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, Wolski W, Collins BC, Malmstrom J, Malmstrom L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223

    Article  PubMed  Google Scholar 

  50. Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantification of 45 proteins in human plasma. Mol Cell Proteomics 8:1860–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588

    Article  CAS  PubMed  Google Scholar 

  52. Furey A, Moriarty M, Bane V, Kinsella B, Lehane M (2013) Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115:104–122

    Article  CAS  PubMed  Google Scholar 

  53. Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8:2339–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brasier AR, Zhao Y, Wiktorowicz JE, Spratt HM, Nascimento EJ, Cordeiro MT, Soman KV, Ju H, Recinos A 3rd, Stafford S, Wu Z, Marques ET Jr, Vasilakis N (2015) Molecular classification of outcomes from dengue virus −3 infections. J Clin Virol 64:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nicol GR, Han M, Kim J, Birse CE, Brand E, Nguyen A, Mesri M, FitzHugh W, Kaminker P, Moore PA, Ruben SM, He T (2008) Use of an immunoaffinity-mass spectrometry-based approach for the quantification of protein biomarkers from serum samples of lung cancer patients. Mol Cell Proteomics 7:1974–1982

    Article  CAS  PubMed  Google Scholar 

  56. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantification of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 3:235–244

    Article  CAS  PubMed  Google Scholar 

  57. Kuhn E, Addona T, Keshishian H, Burgess M, Mani DR, Lee RT, Sabatine MS, Gerszten RE, Carr SA (2009) Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem 55:1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Whiteaker JR, Zhao L, Zhang HY, Feng LC, Piening BD, Anderson L, Paulovich AG (2007) Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem 362:44–54

    Article  CAS  PubMed  Google Scholar 

  59. Hoofnagle AN, Becker JO, Wener MH, Heinecke JW (2008) Quantification of thyroglobulin, a low-abundance serum protein, by immunoaffinity peptide enrichment and tandem mass spectrometry. Clin Chem 54:1796–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuhn E, Whiteaker JR, Mani DR, Jackson AM, Zhao L, Pope ME, Smith D, Rivera KD, Anderson NL, Skates SJ, Pearson TW, Paulovich AG, Carr SA (2012) Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol Cell Proteomics 11:M111 013854

    Article  PubMed  Google Scholar 

  61. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  62. Nery AA, Wrenger C, Ulrich H (2009) Recognition of biomarkers and cell-specific molecular signatures: aptamers as capture agents. J Sep Sci 32:1523–1530

    Article  CAS  PubMed  Google Scholar 

  63. Brasier AR, Garcia J, Wiktorowicz JE, Spratt HM, Comach G, Ju H, Recinos A 3rd, Soman K, Forshey BM, Halsey ES, Blair PJ, Rocha C, Bazan I, Victor SS, Wu Z, Stafford S, Watts D, Morrison AC, Scott TW, Kochel TJ, the Venezuelan Dengue Fever Working, G. (2012) Discovery proteomics and nonparametric modeling pipeline in the development of a candidate biomarker panel for dengue hemorrhagic fever. Clin Transl Sci 5:8–20

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee JW, Devanarayan V, Barrett YC, Weiner R, Allinson J, Fountain S, Keller S, Weinryb I, Green M, Duan L, Rogers JA, Millham R, O’Brien PJ, Sailstad J, Khan M, Ray C, Wagner JA (2006) Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res 23:312–328

    Article  CAS  PubMed  Google Scholar 

  65. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, Huttenhain R, Koomen JM, Liebler DC, Liu T, MacLean B, Mani DR, Mansfield E, Neubert H, Paulovich AG, Reiter L, Vitek O, Aebersold R, Anderson L, Bethem R, Blonder J, Boja E, Botelho J, Boyne M, Bradshaw RA, Burlingame AL, Chan D, Keshishian H, Kuhn E, Kinsinger C, Lee JS, Lee SW, Moritz R, Oses-Prieto J, Rifai N, Ritchie J, Rodriguez H, Srinivas PR, Townsend RR, Van Eyk J, Whiteley G, Wiita A, Weintraub S (2014) Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 13:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, Y., Brasier, A.R. (2016). Qualification and Verification of Protein Biomarker Candidates. In: Mirzaei, H., Carrasco, M. (eds) Modern Proteomics – Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-41448-5_23

Download citation

Publish with us

Policies and ethics