Skip to main content

Analytical Strategies Using Chromatographic Methodologies to Analyze Lignocellulosic Feedstocks and their Value-Added Compounds in Biorefinery Processes

  • Chapter
  • First Online:
Analytical Techniques and Methods for Biomass

Abstract

Strategies for adding value to renewable production chains is a fairly frequent and important worldwide research theme. The mitigation of environmental impacts caused by the use of petroleum derivatives needs to be quickly established and to ensure the achievement of these renewable products the use of analytical platforms that can conduct experiments and processes to obtain these target compounds in a green manner is imperative. This chapter highlights the use of analytical tools, especially those related to chromatographic techniques—conventional and modern—that can be used in the characterization of lignocellulosic biomass and products obtained from biorefinery processes. The information presented is given in function of individual separation and detection techniques, but the most appropriate is to consider, when applicable, the use of different detectors in series. In many cases, the information generated is complementary and the correlation of analytical data is very important to conduct a more robust and accurate characterization study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bairwa K, Srivastava A, Jachak SM (2014) Quantitative analysis of boeravinones in the roots of boerhaavia diffusa by UPLC/PDA. Phytochem Anal 25(5):415–420. doi:10.1002/pca.2509

    Article  Google Scholar 

  • Baldwin RP (1999) Electrochemical determination of carbohydrates: enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis. J Pharm Biomed Anal 19(1):69–81

    Article  Google Scholar 

  • Ball S, Bullock S, Lloyd L, Mapp K, Ewen A (2011) Analysis of carbohydrates, alcohols, and organic acids by ion-exchange chromatography. Agilent Technologies, Santa Clara, CA, http://www.agilent.com/cs/library/applications/5990-8801EN%20Hi-Plex%20Compendium.pdf. Accessed Jan 2016

    Google Scholar 

  • Basumallick L, Rohrer J (2009) Rapid method for the estimation of total free monosaccharide content of corn stover hydrolysate using HPAE-PAD. http://www.dionex.com/en-us/webdocs/114769-BR-HPAE-PAD-Carbohydrate-Analysis-BR700910_E.pdf. Accessed Jan 2016

  • Basumallick L, Rohrer J (2012) Rapid and Sensitive Determination of Biofuel Sugars by Ion Chromatography. doi: http://www.dionex.com/enus/webdocs/113489-AN282-IC-Biofuel-Sugars-03May2012-LPN2876-R2.pdf. Accessed jan 2016

  • Basumallick L, Rohrer J (2011) Determination of hydroxymethylfurfural in honey and biomass. http://www.dionex.com/en-us/webdocs/109807-AN270-IC-HMF-Honey-Biomass-AN70488_E.pdf. Accessed Jan 2016

  • Beluomini MA, da Silva JL, Stradiotto NR (2015) Determination of uronic acids in sugarcane bagasse by anion-exchange chromatography using an electrode modified with copper nanoparticles. Anal Methods 7(6):2347–2353. doi:10.1039/c4ay03060e

    Article  Google Scholar 

  • Bhope SG, Gaikwad PS, Kuber VV, Patil MJ (2013) RP-HPLC method for the simultaneous quantitation of boeravinone E and boeravinone B in Boerhaavia diffusa extract and its formulation. Nat Prod Res 27(6):588–591. doi:10.1080/14786419.2012.676550

    Article  Google Scholar 

  • Bowman MJ, Dien BS, O'Bryan PJ, Sarath G, Cotta MA (2011) Selective chemical oxidation and depolymerization of switchgrass (Panicum virgatum L.) xylan with oligosaccharide product analysis by mass spectrometry. Rapid Commun Mass Spectrom 25(7):941–950. doi:10.1002/rcm.4949

    Article  Google Scholar 

  • Bozell JJ, Petersen GR (2009) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi:10.1039/b922014c

    Article  Google Scholar 

  • Brokl M, Hernández-Hernández O, Soria AC, Sanz ML (2011) Evaluation of different operation modes of high performance liquid chromatography for the analysis of complex mixtures of neutral oligosaccharides. J Chromatogr A 1218(42):7697–7703. doi:10.1016/j.chroma.2011.05.015

    Article  Google Scholar 

  • Carbonell-Barrachina AA, Szychowski PJ, Veronica Vasquez M, Hernandez F, Wojdylo A (2015) Technological aspects as the main impact on quality of quince liquors. Food Chem 167:387–395. doi:10.1016/j.foodchem.2014.07.012

    Article  Google Scholar 

  • Castellari M, Sartini E, Spinabelli U, Riponi C, Galassi S (2001) Determination of carboxylic acids, carbohydrates, glycerol, ethanol, and 5-HMF in beer by high-performance liquid chromatography and UV-refractive index double detection. J Chromatogr Sci 39(6):235–238

    Article  Google Scholar 

  • Cavka A, Alriksson B, Ahnlund M, Jonsson LJ (2011) Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnol Bioeng 108(11):2592–2599. doi:10.1002/bit.23244

    Article  Google Scholar 

  • Cerdan-Calero M, Sendra JM, Sentandreu E (2012) Gas chromatography coupled to mass spectrometry analysis of volatiles, sugars, organic acids and aminoacids in Valencia Late orange juice and reliability of the Automated Mass Spectral Deconvolution and Identification System for their automatic identification and quantification. J Chromatogr A 1241:84–95. doi:10.1016/j.chroma.2012.04.014

    Article  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51(7):1412–1421. doi:10.1016/j.enconman.2010.01.015

    Article  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502. doi:10.1021/cr050989d

    Article  Google Scholar 

  • Dartora N, de Souza LM, Santana AP, Iacomini M, Valduga AT, Gorin PAJ, Sassaki GL (2011) UPLC-PDA-MS evaluation of bioactive compounds from leaves of Ilex paraguariensis with different growth conditions, treatments and ageing. Food Chem 129(4):1453–1461. doi:10.1016/j.foodchem.2011.05.112

    Article  Google Scholar 

  • Davis MW (1998) A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC/PAD). J Wood Chem Technol 18(2):235–252. doi:10.1080/02773819809349579

    Article  Google Scholar 

  • Dionex (2000) Analysis of carbohydrates by high performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD). http://www.dionex.com/en-us/webdocs/5023-TN20_LPN032857-04.pdf. Accessed Jan 2016

  • Donate PM (2014) Sintese ambientalmente correta a partir de biomassa. Orbital 6(2):101–117

    Google Scholar 

  • Eiceman GA, Hill HH, Davani B (1994) Gas chromatography. Anal Chem 66(12):621R–633R. doi:10.1021/ac00084a023

    Article  Google Scholar 

  • Epriliati I, Kerven G, D'Arcy B, Gidley MJ (2010) Chromatographic analysis of diverse fruit components using HPLC and UPLC. Anal Methods 2(10):1606–1613. doi:10.1039/c0ay00244e

    Article  Google Scholar 

  • Escrig PV, Iglesias DJ, Corma A, Primo J, Primo-Millo E, Cabedo N (2013) Euphorbia characias as bioenergy crop: a study of variations in energy value components according to phenology and water status. J Agric Food Chem 61(42):10096–10109. doi:10.1021/jf403015a

    Article  Google Scholar 

  • Fedorowski J, LaCourse WR (2015) A review of pulsed electrochemical detection following liquid chromatography and capillary electrophoresis. Anal Chim Acta 861:1–11. doi:10.1016/j.aca.2014.08.035

    Article  Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101(23):8915–8922. doi:10.1016/j.biortech.2010.06.125

    Article  Google Scholar 

  • Frolov A, Henning A, Boettcher C, Tissier A, Strack D (2013) An UPLC-MS/MS method for the simultaneous identification and quantitation of cell wall phenolics in Brassica napus seeds. J Agric Food Chem 61(6):1219–1227. doi:10.1021/jf3042648

    Article  Google Scholar 

  • Fung EN, Jemal M, Aubry A-F (2013) High-resolution MS in regulated bioanalysis: where are we now and where do we go from here? Bioanalysis 5(10):1277–1284. doi:10.4155/bio.13.81

    Article  Google Scholar 

  • Gencoglu A, Minerick AR (2014) Electrochemical detection techniques in micro- and nanofluidic devices. Microfluid Nanofluid 17(5):781–807. doi:10.1007/s10404-014-1385-z

    Article  Google Scholar 

  • Heineman WR, Kissinger PT (1980) Analytical electrochemistry – methodology and applications of dynamic techniques. Anal Chem 52(5):R138–R151

    Article  Google Scholar 

  • Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29(12):1784–1821. doi:10.1002/jssc.200600199

    Article  Google Scholar 

  • Herbreteau B, Lafosse M, Morinallory L, Dreux M (1992) High-performance liquid-chromatography of raw sugars and polyols using bonded silica-gels. Chromatographia 33(7-8):325–330. doi:10.1007/bf02275911

    Article  Google Scholar 

  • Héron S, Dreux M, Alain T (2007) Factors affecting sensitivity of evaporative light scattering detection. LG GC Eur 20(7):414–419

    Google Scholar 

  • Hope JL, Prazen BJ, Nilsson EJ, Lidstrom ME, Synovec RE (2005) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65(2):380–388. doi:10.1016/j.talanta.2004.06.025

    Article  Google Scholar 

  • Ibanez AB, Bauer S (2014) Analytical method for the determination of organic acids in dilute acid pretreated biomass hydrolysate by liquid chromatography-time-of-flight mass spectrometry. Biotechnol Biofuels 7:145. doi:10.1186/s13068-014-0145-3

    Article  Google Scholar 

  • Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 1184(1-2):474–503. doi:10.1016/j.chroma.2008.01.075

    Article  Google Scholar 

  • Jensen MB, Johnson DC (1997) Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Anal Chem 69(9):1776–1781. doi:10.1021/ac960828x

    Article  Google Scholar 

  • Kafkas E, Kosar M, Turemis N, Baser KHC (2006) Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey. Food Chem 97(4):732–736. doi:10.1016/j.foodchem.2005.09.023

    Article  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145. doi:10.1007/s00253-003-1537-7

    Article  Google Scholar 

  • Kamm B, Kamm M, Gruber PR, Kromus S (2008) Biorefinery systems – an overview. In: Kamm B, Gruber PR, Kamm B (eds) Biorefineries-industrial processes and products. Wiley-VCH, Berlin, pp 1–40. doi:10.1002/9783527619849.ch1

    Google Scholar 

  • Kissinger PT (1986) Electrochemical detectors. In: Vickrey TH (ed) Liquid chromatography detectors, 1st edn. Marcel Dekker, New York, NY, pp 125–164

    Google Scholar 

  • Kiyota E, Mazzafera P, Sawaya ACHF (2012) Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography-tandem mass spectrometry with a do-it-yourself oligomer database. Anal Chem 84(16):7015–7020. doi:10.1021/ac301112y

    Article  Google Scholar 

  • Kotnik D, Novic M, LaCourse WR, Pihlar B (2011) Cathodic re-activation of the gold electrode in pulsed electrochemical detection of carbohydrates. J Electroanal Chem 663(1):30–35. doi:10.1016/j.jelechem.2011.09.026

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi:10.1007/s10295-008-0327-8

    Article  Google Scholar 

  • La Torre GL, Saitta M, Vilasi F, Pellicano T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94(4):640–650. doi:10.1016/j.foodchem.2005.02.007

    Article  Google Scholar 

  • Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84–6:617–632. doi:10.1385/abab:84-86:1-9:617

    Article  Google Scholar 

  • Leijdekkers AGM, Sanders MG, Schols HA, Gruppen H (2011) Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection. J Chromatogr A 1218(51):9227–9235. doi:10.1016/j.chroma.2011.10.068

    Article  Google Scholar 

  • Li H, Qing Q, Kumar R, Wyman CE (2013) Chromatographic determination of 1, 4-beta-xylooligosaccharides of different chain lengths to follow xylan deconstruction in biomass conversion. J Ind Microbiol Biotechnol 40(6):551–559. doi:10.1007/s10295-013-1254-x

    Article  Google Scholar 

  • Liu XJ, Ai N, Zhang HY, Lu MZ, Ji DX, Yu FW, Ji JB (2012) Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD. Carbohydr Res 353:111–114. doi:10.1016/j.carres.2012.03.029

    Article  Google Scholar 

  • Luo CD, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenerg 22(2):125–138. doi:10.1016/s0961-9534(01)00061-7

    Article  Google Scholar 

  • Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sust Energ Rev 49:871–906. doi:10.1016/j.rser.2015.04.091

    Article  Google Scholar 

  • Lv Y, Yang XB, Zhao Y, Ruan Y, Yang Y, Wang ZZ (2009) Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem 112(3):742–746. doi:10.1016/j.foodchem.2008.06.042

    Article  Google Scholar 

  • Ma CM, Sun Z, Chen CB, Zhang LL, Zhu SH (2014) Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem 145:784–788. doi:10.1016/j.foodchem.2013.08.135

    Article  Google Scholar 

  • Maldaner L, Jardim ICSF (2009) O estado da arte da cromatografia líquida de ultra eficiência. Quim Nova 32:214–222

    Article  Google Scholar 

  • March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32(4):351–369. doi:10.1002/(sici)1096-9888(199704)32:4<351::aid-jms512>3.0.co;2-y

    Article  Google Scholar 

  • Marsman JH, Wildschut J, Evers P, de Koning S, Heeres HJ (2008) Identification and classification of components in flash pyrolysis oil and hydrodeoxygenated oils by two-dimensional gas chromatography and time-of-flight mass spectrometry. J Chromatogr A 1188(1):17–25. doi:10.1016/j.chroma.2008.02.034

    Article  Google Scholar 

  • Matias J, Gonzalez J, Royano L, Barrena RA (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenergy 35(5):2006–2012. doi:10.1016/j.biombioe.2011.01.056

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energ Combust Sci 38(4):522–550. doi:10.1016/j.pecs.2012.02.002

    Article  Google Scholar 

  • Meyer VR (2010) Detectors. In: Practical high-performance liquid chromatography, 5th edn. John Wiley and Sons, Ltd., London, pp 91–116

    Chapter  Google Scholar 

  • Miranda-Hernandez MP, Valle-Gonzalez ER, Ferreira-Gomez D, Perez NO, Flores-Ortiz LF, Medina-Rivero E (2016) Theoretical approximations and experimental extinction coefficients of biopharmaceuticals. Anal Bioanal Chem 408(5):1523–1530. doi:10.1007/s00216-015-9261-6

    Article  Google Scholar 

  • Nowicka P, Wojdylo A (2016) Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree. Food Chem 196:925–934. doi:10.1016/j.foodchem.2015.10.019

    Article  Google Scholar 

  • NRC (2000) Overview. In: NRC (ed) Biobased industrial products, priorities for research and commercialization, 1st edn. National Academic, Washington, DC, pp 15–52

    Google Scholar 

  • NREL (2008) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. http://www.nrel.gov/docs/gen/fy08/42623.pdf. Accessed Jan 2016

  • Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, Abu-Omar MM, Bozell JJ, Black SK, Kenttamaa HI (2012) High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal Chem 84(14):6000–6007. doi:10.1021/ac300762y

    Article  Google Scholar 

  • Patel KN, Patel JK, Patel MP, Rajput GC, Patel HA (2010) Introduction to hyphenated techniques and their applications in pharmacy. Pharm Methods 1(1):2–13. doi:10.1016/S2229-4708(10)11002-4

    Article  MATH  Google Scholar 

  • Pazourek J (2014) Fast separation and determination of free myo-inositol by hydrophilic liquid chromatography. Carbohydr Res 391:55–60. doi:10.1016/j.carres.2014.03.010

    Article  Google Scholar 

  • Pettersen RC (1984) The chemical-composition of wood. In: Rowell R (ed) The chemistry of solid wood, Advances in chemistry, 1st edn. American Chemical Society, Washington, DC, pp 57–126

    Chapter  Google Scholar 

  • Pettersen RC (1991) Wood sugar analysis by anion chromatography. J Wood Chem Technol 11(4):495–501. doi:10.1080/02773819108051089

    Google Scholar 

  • Phenomenex (2016) Kinetex 2.6 μm Calculator. https://www.phenomenex.com/tools/kinetexcalculator. Accessed Jan 2016

  • Pitt JJ (2009) Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev 30(1):19

    Google Scholar 

  • Qing Q, Li H, Kumar R, Wyman CE (2013) Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. John Wiley and Sons, Oak Ridge, TN, pp 391–415

    Chapter  Google Scholar 

  • Raj A, Reddy MMK, Chandra R (2007) Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. Int Biodeterior Biodegrad 59(4):292–296. doi:10.1016/j.ibiod.2006.09.006

    Article  Google Scholar 

  • Remoroza C, Cord-Landwehr S, Leijdekkers AGM, Moerschbacher BM, Schols HA, Gruppen H (2012) Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym 90(1):41–48. doi:10.1016/j.carbpol.2012.04.058

    Article  Google Scholar 

  • Ross KL, Tu TT, Smith S, Dalluge JJ (2007) Profiling of organic acids during fermentation by ultraperformance liquid chromatography-tandem mass spectrometry. Anal Chem 79(13):4840–4844. doi:10.1021/ac0624243

    Article  Google Scholar 

  • Roussel TJ, Jackson DJ, Baldwin RP, Keynton RS (2013) Amperometric techniques. Encyclopedia Microfluidics Nanofluidics 2013:1–11. doi:10.1007/978-3-642-27758-0_26-2

    Google Scholar 

  • Rucki RJ (1980) Electrochemical detectors for flowing liquid-systems. Talanta 27(2):147–156. doi:10.1016/0039-9140(80)80029-4

    Article  Google Scholar 

  • Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I (2011) Derivatization of carbohydrates for GC and GC-MS analyses. J Chromatogr B Anal Technol Biomed Life Sci 879(17-18):1226–1240. doi:10.1016/j.jchromb.2010.11.013

    Article  Google Scholar 

  • Santos AL, Takeuchi RM, Fenga PG, Stradiotto NR (2011) Electrochemical methods in analysis of biofuels. In: Ivanov O (ed) Applications and experiences of quality control, 1st edn. InTech, Rijeka, pp 451–494

    Google Scholar 

  • Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. doi:10.1021/jf1008023

    Article  Google Scholar 

  • Snyder LR, Kirkland JJ, Dolan JW (2010) Introduction to modern liquid chromatography, 3rd edn. Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Stagge S, Cavka A, Jonsson LJ (2015) Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast. AMB Express 5:61. doi:10.1186/s13568-015-0149-9

    Article  Google Scholar 

  • Sun F, Sun Q (2015) Current trends in lignocellulosic analysis with chromatography. Ann Chromatogr Sep Tech 1(2):03

    Google Scholar 

  • Swartz ME (2005) UPLC (TM): an introduction and review. J Liq Chromatogr Relat Technol 28(7-8):1253–1263. doi:10.1081/jlc-200053046

    Article  Google Scholar 

  • Swartz ME, Krull IS (2012) HPLC method development and optimization with validation in mind. In: Swartz ME, Krull IS (eds) Handbook of analytical validation, 1st edn. Taylor & Francis Group, Boca Raton, FL, pp 37–60

    Google Scholar 

  • ThermoScientific (2016) HPLC method development calculator. http://www.hplctransfer.com/. Accessed Jan 2016

  • Valliyodan B, Shi H, Nguyen HT (2015) A simple analytical method for high-throughput screening of major sugars from soybean by normal-phase HPLC with evaporative light scattering detection. Chromatogr Res Int 2015:8. doi:10.1155/2015/757649

    Google Scholar 

  • van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Biorefin 2(1):41–57. doi:10.1002/bbb.43

    Article  Google Scholar 

  • Vaz S Jr, Dodson JR (2014) Application of analytical chemistry in the production of liquid biofuels. In: Domingos Padula A, Silveira dos Santos M, Benedetti Santos OI, Borenstein D (eds) Liquid biofuels: emergence, development and prospects, vol 27. Springer, London, pp 173–187

    Google Scholar 

  • Wang Y-H, Avula B, Fu X, Wang M, Khan IA (2012) Simultaneous determination of the absolute configuration of twelve monosaccharide enantiomers from natural products in a single injection by a UPLC-UV/MS method. Planta Med 78(8):834–837. doi:10.1055/s-0031-1298432

    Article  Google Scholar 

  • Waters (2016) Increase productivity and reduce solvent consumption with UPLC. http://www.waters.com/waters/promotionDetail.htm?id=10102140&locale=pt_BR. Accessed Jan 2016

  • Weber SG, Purdy WC (1981) Electrochemical detectors in liquid-chromatography – a short review of detector design. Ind Eng Chem Prod Res Dev 20(4):593–598. doi:10.1021/i300004a003

    Article  Google Scholar 

  • Webster GK, Jensen JS, Diaz AR (2004) An investigation into detector limitations using evaporative light-scattering detectors for pharmaceutical applications. J Chromatogr Sci 42(9):484–490. doi:10.1093/chromsci/42.9.484

    Article  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I – results of screening for potential candidates from sugars and synthesis gas, 1st edn. States, United

    Google Scholar 

  • Westereng B, Agger JW, Horn SJ, Vaaje-Kolstad G, Aachmann FL, Stenstrøm YH, Eijsink VGH (2013) Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 1271(1):144–152. doi:10.1016/j.chroma.2012.11.048

    Article  Google Scholar 

  • Wettstein SG, Alonso DM, Gurbuz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1(3):218–224. doi:10.1016/j.coche.2012.04.002

    Article  Google Scholar 

  • Xu J, Chen D, Yan X, Chen J, Zhou C (2010) Global characterization of the photosynthetic glycerolipids from a marine diatom Stephanodiscus sp. by ultra performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight mass spectrometry. Anal Chim Acta 663(1):60–68. doi:10.1016/j.aca.2010.01.026

    Article  Google Scholar 

  • Xu Y, Fan L, Wang X, Yong Q, Yu SY (2013) Simultaneous Separation and Quantification of Linear Xylo- and Cello-Oligosaccharides Mixtures in Lignocellulosics Processing Products on High-Performance Anion-Exchange Chromatography Coupled with Pulsed Amperometric Detection. Bioresources 8 (3):3247–3259

    Google Scholar 

  • Yu K, Little D, Plumb R, Smith B (2006) High-throughput quantification for a drug mixture in rat plasma – a comparison of ultra performance (TM) liquid chromatography/tandem mass spectrometry with high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 20(4):544–552. doi:10.1002/rcm.2336

    Article  Google Scholar 

  • Zhou X, Cao S, Li X, Tang B, Ding X, Xi C, Hu J, Chen Z (2015) Simultaneous determination of 18 preservative residues in vegetables by ultra high performance liquid chromatography coupled with triple quadrupole/linear ion trap mass spectrometry using a dispersive-SPE procedure. J Chromatogr B 989:21–26. doi:10.1016/j.jchromb.2015.02.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clenilson Martins Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Souto, A.L. et al. (2016). Analytical Strategies Using Chromatographic Methodologies to Analyze Lignocellulosic Feedstocks and their Value-Added Compounds in Biorefinery Processes. In: Vaz Jr., S. (eds) Analytical Techniques and Methods for Biomass. Springer, Cham. https://doi.org/10.1007/978-3-319-41414-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41414-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41413-3

  • Online ISBN: 978-3-319-41414-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics