Skip to main content

The Complex, Clonal, and Controversial Nature of Barrett’s Esophagus

  • Chapter
  • First Online:
Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 908))

Abstract

Barrett’s esophagus (BO) is a preneoplastic condition described as the replacement of the stratified squamous epithelium of the distal esophagus with one that histologically presents as a diverse mixture of metaplastic glands resembling gastric or intestinal-type columnar epithelium. The clonal origins of BO are still unclear. More recently, we have begun to investigate the relationship between the various metaplastic gland phenotypes observed in BO, how they evolve, and the cancer risk they bestow. Studies have revealed that glands along the BO segment are clonal units containing a single stem cell clone that can give rise to all the differentiated epithelial cell types in glands. Clonal lineage tracing analysis has revealed that Barrett’s glands are capable of bifurcation and this facilitates clonal expansion and competition. In fact, BO in some patients appears to consist of multiple, independently initiated clones that compete with each other for space and possibly resources. This chapter discusses the concepts of clonal competition and expansion in BO and sets out to query what we know about the role of gland diversity and phenotypic evolution within this complex columnar metaplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzgerald RC, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63(1):7–42.

    Article  PubMed  Google Scholar 

  2. Zeki S, Fitzgerald RC. Targeting care in Barrett’s oesophagus. Clin Med. 2014;14 Suppl 6:s78–83.

    Article  Google Scholar 

  3. Hvid-Jensen F, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365(15):1375–83.

    Article  CAS  PubMed  Google Scholar 

  4. Hardie LJ, et al. p16 expression in Barrett’s esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. Cancer Lett. 2005;217(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  5. Wong DJ, et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61(22):8284–9.

    CAS  PubMed  Google Scholar 

  6. Galipeau PC, et al. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst. 1999;91(24):2087–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li X, et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila). 2014;7(1):114–27.

    Article  Google Scholar 

  8. Ross-Innes CS, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47(9):1038–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weaver JM, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46(8):837–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stachler MD, et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet. 2015;47(9):1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McDonald SA, et al. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol. 2015;12(1):50–60.

    Article  PubMed  Google Scholar 

  12. Barbera M, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64(1):11–9.

    Article  PubMed  Google Scholar 

  13. Lavery DL, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63(12):1854–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker AM, et al. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Sci Rep. 2015;5:8654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan Q, et al. Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology. 2013;144(4):761–70.

    Article  PubMed  Google Scholar 

  16. Hahn HP, et al. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol. 2009;33(7):1006–15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gottfried MR, McClave SA, Boyce HW. Incomplete intestinal metaplasia in the diagnosis of columnar lined esophagus (Barrett’s esophagus). Am J Clin Pathol. 1989;92(6):741–6.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson JJ, Zinsser KR, Enterline HT. Barrett’s metaplasia and adenocarcinoma of the esophagus and gastroesophageal junction. Hum Pathol. 1983;14(1):42–61.

    Article  CAS  PubMed  Google Scholar 

  19. Going JJ, et al. Zoning of mucosal phenotype, dysplasia, and telomerase activity measured by telomerase repeat assay protocol in Barrett’s esophagus. Neoplasia. 2004;6(1):85–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang X, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145(7):1023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006;2(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  22. Leedham SJ, et al. Gastrointestinal stem cells and cancer: bridging the molecular gap. Stem Cell Rev. 2005;1(3):233–41.

    Article  CAS  PubMed  Google Scholar 

  23. Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(2):90–100.

    Article  PubMed  Google Scholar 

  24. Kozar S, et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell. 2013;13(5):626–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Garcia C, et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330(6005):822–5.

    Article  CAS  PubMed  Google Scholar 

  26. Novelli M, et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A. 2003;100(6):3311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salk JJ, et al. Clonal expansions in ulcerative colitis identify patients with neoplasia. Proc Natl Acad Sci U S A. 2009;106(49):20871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maegawa S, et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20(3):332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphries A, et al. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci U S A. 2013;110(27):E2490–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor RW, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112(9):1351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McDonald SA, et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology. 2008;134(2):500–10.

    Article  CAS  PubMed  Google Scholar 

  32. Nicholson AM, et al. Barrett’s metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut. 2012;61(10):1380–9.

    Article  CAS  PubMed  Google Scholar 

  33. Baker AM, et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 2014;8(4):940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheng H, et al. Crypt production in normal and diseased human colonic epithelium. Anat Rec. 1986;216(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gatenby PA, et al. Does the length of the columnar-lined esophagus change with time? Dis Esophagus. 2007;20(6):497–503.

    Article  CAS  PubMed  Google Scholar 

  36. Moawad FJ, et al. Barrett’s oesophagus length is established at the time of initial endoscopy and does not change over time: results from a large multicentre cohort. Gut. 2015;64(12):1874–80.

    Article  PubMed  Google Scholar 

  37. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    Article  CAS  PubMed  Google Scholar 

  38. Barrett MT, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet. 1999;22(1):106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leedham SJ, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maley CC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006;38(4):468–73.

    Article  CAS  PubMed  Google Scholar 

  41. Jones S, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A. 2008;105(11):4283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lavery DL. et al. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett’s oesophagus. Gut. 2016;65:907–13.

    Google Scholar 

  43. Zeki SS, et al. Clonal selection and persistence in dysplastic Barrett’s esophagus and intramucosal cancers after failed radiofrequency ablation. Am J Gastroenterol. 2013;108(10):1584–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Evans, J.A., McDonald, S.A.C. (2016). The Complex, Clonal, and Controversial Nature of Barrett’s Esophagus. In: Jansen, M., Wright, N. (eds) Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract. Advances in Experimental Medicine and Biology, vol 908. Springer, Cham. https://doi.org/10.1007/978-3-319-41388-4_3

Download citation

Publish with us

Policies and ethics