Skip to main content

Plumbagin and Its Role in Chronic Diseases

  • Chapter
  • First Online:
Drug Discovery from Mother Nature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 929))

Abstract

Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a plant-derived naphthoquinones obtained mainly from three families, including Plumbaginaceae, Droseraceae, and Ebenaceae. Plumbagin has exhibited its potential therapeutic benefits on numerous chronic diseases, i.e., breast cancer, non-small cell lung cancer, melanoma, ovarian, squamous cell carcinomas, pancreatic cancer, and prostate cancer. In addition, its anti-inflammatory and antimicrobial activities as well as control of diabetes and cardiovascular diseases have been reported. Thus, plumbagin is a promising agent for development as a new drug for the treatment or control of chronic diseases. Studies on controlled drug release or drug delivery systems have been involved for improvement of its therapeutic efficacy as well as for the reduction of its toxicity. However, most of the recent research information is from in vitro and in vivo studies. Further clinical studies are therefore required for its developments and applications as a novel drug used to treat chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandhy B, Thomas S, Isabel W, Shenbagavathai R (2006) Ethno medicinal plants used by the valaiyan community of Piranmalai hills (Reserved forest), Tamil Nadu, India. A pilot study. Afr J Tradit Complements Altern Med 3:101–114

    Google Scholar 

  2. Gu XD, Sun MY, Zhang L, Fu HW, Cui L, Chen RZ, Zhang DW, Tian JK (2010) UV-B induced changes in the secondary metabolites of Morusalba L. Leaves Mol 15:2980–2993

    Article  CAS  Google Scholar 

  3. Babula P, Mikelova R, Adam V, Kizek R, Havel L, Sladky Z (2006) Naphthoquinones-biosynthesis, occurrence and metabolism in plants. CeskaSlov Farm 55:151–159

    CAS  Google Scholar 

  4. Babula P, Adam V, Havel L, Kizek R (2007) Naphthoquinones and their pharmacological properties. CeskaSlov Farm 56:114–120

    CAS  Google Scholar 

  5. Krolicka A, Szpitter A, Maciag M, Biskup E, Gilgenast E, Romanik G, Kaminski M, Wegrzyn G, Lojkowska E (2009) Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of Droseraaliciae. Biotechnol Appl Biochem 53:175–184

    CAS  PubMed  Google Scholar 

  6. Weissenberg M, Meisner J, Klein M, Schaeffler I, Eliyahu M, Schmutterer H, Ascher KRS (1997) Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the Mexican bean beetle. Epilachnavarivestis. J Chem Ecol 23:3–18

    Article  CAS  Google Scholar 

  7. Duroux L, Delmotte FM, Lancelin JM, Keravis G, Jay-Allemand C (1998) Insight into naphthoquinone metabolism: beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-d-glucopyranoside. Biochem J 333:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Babula P, Adam V, Havel L, Kizek R (2009) Note worthy secondary metabolites naphthoquinones-their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47–68

    Article  CAS  Google Scholar 

  9. Moammir HA, Nancy E, Dreckschmidt, Ajit K (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032

    Google Scholar 

  10. Dutta S, Vankatesh D, Souza R, Shenoy BD, Udupi RH, Udupa N (2002) Niosomal delivery of plumbagin ester for better antifertility activity. Indian Drugs 39:163–165

    Google Scholar 

  11. Pendurkar, Sudha R, Mengi, Sushma A (2009) Antihyperlipidemic effect of aqueous extract of Plumbago zeylanica roots in diet induced hyperlipidemic rat. Pharm Biol 47:1004–1010

    Google Scholar 

  12. Jiangsu New Medical College, Zhongyao Dictionary (Encyclopedia of Chinese MateriaMedica). Scientific & Technological Press, Shanghai, 1979; 711–712

    Google Scholar 

  13. Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad I, Mehmood Z, Mohammad F, Ahmad S (2000) Antimicrobial potency and synergistic activity of five traditionally used Indian medicinal plants. J Med Aromatic Plant Sci 23:173–176

    Google Scholar 

  15. Mehmood Z, Ahmad I, Mohammad F, Ahmad S (1999) Indian medicinal plants: a potential source of anticandidal drugs. Pharm Biol 37:237–242

    Article  Google Scholar 

  16. Oyedapo OO (1996) Studies on the bioactivity of the extract of Plumbago zeylanica. Phytotherapy Res 13:346–348

    Google Scholar 

  17. Jeyachandran R, Mahesh A, Cindrella L, Sudhakar S, Pazhanichamy K (2009) Antibacterial activity of plumbagin and root extracts of Plumbago zeylanica L. Acta Biologica Cracoviensia Series Botanica 51:17–22

    Google Scholar 

  18. Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S (2012) Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:4356–4363

    Article  CAS  PubMed  Google Scholar 

  19. Kanchana N, Sadiq AM (2011) Hepatoprotective effect of Plumbago zeylanica on paracetamol induced liver toxicity in rats. Int J Pharm Pharm Sci 3:151–154

    Google Scholar 

  20. Sharma I, Gusain D, Dixit VP (1991) Hypolipidaemic and ant atherosclerotic effects of plumbagin in rabbits. Indian J Physiol Pharmacol 35:10–14

    CAS  PubMed  Google Scholar 

  21. Van-der VLM (1974) Distribution of plumbagin in the Plumbaginaceae. Phytochemistry 11:3247–3248

    Article  Google Scholar 

  22. Nahalka J, Blanarik P, Gemeiner P, Matusova E, Partlova I (1996) Production of plumbagin by cell suspension cultures of Drosophyllum lusitanicum. J Biotechnol 49:153–161

    Article  CAS  Google Scholar 

  23. Crouch IJ, Finnie JF, Staden JV (1990) Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tissue Organ Cult 21:79–82

    Article  CAS  Google Scholar 

  24. Budzianowski J (2000) Naphthoquinone glucosides of Droseragigantea from in vitro cultures. Planta Medica 66:667–669

    Google Scholar 

  25. Sung B, Oyajobi B, Aggarwal BB (2012) Plumbagin inhibits osteoclastogenesis and reduces human breast cancer-induced osteolytic bone metastasis in mice through suppression of RANKL signaling. Mol Cancer Ther 11(2):350–359

    Article  CAS  PubMed  Google Scholar 

  26. Hafeeza BB, Zhongb W, Fischera JW, Mustafaa A, Shic X, Meskea L, Hongd H, Caid W, Havighurste T, Kime KM, Ajit K, Verma AK (2013) Plumbagin, a medicinal plant (Plumbago zeylanica)-derived 1, 4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3 M-luciferase cells in an orthotopic xenograft mouse model. Mol Oncol 7:428–439

    Article  Google Scholar 

  27. van der Vijver LM (1972) Distribution of plumbagin in the Plumbaginaceae. Phytochemistry 11:3247–3248

    Article  Google Scholar 

  28. Windholz M (ed) (1983) The merck index, 10th edn. Merck & Co Inc, N.J.

    Google Scholar 

  29. Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    Article  CAS  PubMed  Google Scholar 

  30. Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19:877–890

    Article  CAS  PubMed  Google Scholar 

  31. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  32. Raghu D, Karunagaran D (2014) Plumbagin down regulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod 77:1130–1134

    Article  CAS  PubMed  Google Scholar 

  33. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Wolf GW, Bhat K (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23:8902–8912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dickens MP, Fitzgerald R, Fischer PM (2010) Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Semin Cancer Biol 20:10–18

    Article  CAS  PubMed  Google Scholar 

  36. Tian L, Yin D, Ren Y (2012) Plumbagin induces apoptosis via the p53 pathway and generation of reactive oxygen species in human osteosarcoma cells. Molecular Medicine Reports 5:126–132

    CAS  PubMed  Google Scholar 

  37. Huang Y, Chen X, Dikov MM (2007) Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110:624–631

    Google Scholar 

  38. Rak J, Kerbel RS (2001) Ras regulation of vascular endothelial growth factor and angiogenesis. Methods Enzymol 333:267–283

    Article  CAS  PubMed  Google Scholar 

  39. Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires as activation. J Biol Chem 276:49289–49298

    Article  CAS  PubMed  Google Scholar 

  40. Dancey JE (2002) Agents targeting Ras signaling pathway. Curr Pharm Des 8:2259–2267

    Article  CAS  PubMed  Google Scholar 

  41. Meadows KN, Bryant P, Vincent PA (2004) Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene 23:192–200

    Article  CAS  PubMed  Google Scholar 

  42. Hoa M, Davis SL, Ames SJ (2002) Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res 62:7154–7156

    CAS  PubMed  Google Scholar 

  43. Morgan MA, Ganser A, Reuter CW (2007) Targeting the RAS signaling pathway in malignant hematologic diseases. Curr Drug Targets 8:217–235

    Article  CAS  PubMed  Google Scholar 

  44. Lai L, Liu J, Zhai D (2012) Plumbagin inhibits tumor angiogenesis and tumor growth through VEGFR2-mediated Ras signaling pathway. Br J Pharmacol 165:1084–1096

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sinha S, Pal K, Elkhanany A (2013) Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer 132:1201–1212

    Article  CAS  PubMed  Google Scholar 

  46. Zheng H, Kang Y (2014) Multilayer control of the EMT master regulators. Oncogene 33:1755–1763

    Article  CAS  PubMed  Google Scholar 

  47. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nauseef JT, Henry MD (2011) Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat Rev Urol 8:428–439

    Article  PubMed  Google Scholar 

  49. Qui JX, Zhou ZW, He ZX (2015) Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Drug Design Develop Ther 9:349–417

    Google Scholar 

  50. Pan S-T, Qin Y, Zhou Z-W, He Z-X, Zhang X, Yang T, Yang Y-X, Wang D, Zhou S-F, Qiu J-X (2015) Plumbagin suppresses epithelial to mesenchymal transition and stemless via inhibiting Nrf2-mediated signaling pathway in human tongue squamous cell carcinoma cells. Drug Design Develop Ther 9:5511–5551

    Google Scholar 

  51. Zhang S, Li D, Yang J-Y, Yan T-B (2015) Plumbagin protects against glucocorticoid-induced osteoporosis through Nrf-2 pathway. Cell Stress Chaperones 20:621–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 281:17023–17033

    Article  CAS  PubMed  Google Scholar 

  53. Shyur L, Lau ASY (2012) Advances in botanical research: recent trends in medicinal plants research, vol 62. Academic Press, London

    Google Scholar 

  54. Ahmad A, Banerjee S, Wang Z, Kong D, Sarkar FH (2008) Plumbagin-induced apoptosis of human breast cancer cells is mediated by inactivation of NF-kappaB and Bcl-2. J Cell Biochem 105:1461–1471

    Article  CAS  PubMed  Google Scholar 

  55. Kawiak A, Zawacka-Pankau J, Lojkowska E (2012) Plumbagin induces apoptosis in Her2-overexpressing breast cancer cells through the mitochondrial-mediated pathway. J Nat Prod 75:747–751

    Article  CAS  PubMed  Google Scholar 

  56. Kilcar AY, Tekin V, Muftuler FZB, Medine EI (2015) 99mTc labeled plumbagin: estrogen receptor dependent examination against breast cancer cells and comparison with PLGA encapsulated form. J Radio Anal Nuclear Chem. doi:10.1007/s10967-015-4284-1

    Google Scholar 

  57. Thasni1 KA, Rakesh S, Rojini GG, Ratheeshkumar T, Srinivas G, Priya S (2008) Estrogen-dependent cell signaling and apoptosis in BRCA1-blocked BG1 ovarian cancer cells in response to plumbagin and other chemotherapeutic agents. Ann Oncol 19:696–705

    Google Scholar 

  58. Wang F, Wang Q, Zhou Z-W, Yu S-N, Pan S-T, He Z-X, Zhang X, Wang D, Yang Y-X, Yang T, Sun T, Li M, Qiu J-X, Zhou S-F (2015) Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. Drug Design Develop Ther 9 537–560

    Google Scholar 

  59. Powolny AA, Singh SV (2008) Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res 25:2171–2180

    Article  CAS  PubMed  Google Scholar 

  60. Nair HA, Snima KS, Kamath RC, Nair SV, Lakshmanan V-K (2015) Plumbagin nanoparticles induce dose and pH dependent toxicity on prostate cancer cells. Curr Drug Deliv 12:709–716

    Article  CAS  PubMed  Google Scholar 

  61. Chen CA, Chang HH, Kao CY, Tsai TH, Chen YJ (2009) Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology 9:797–809

    Article  CAS  PubMed  Google Scholar 

  62. Aziz MH, Dreckschmidt NE, Verma AK (2008) Plumbagin, a medicinal plant-derived naphthoquinone, is a novel inhibitor of the growth and invasion of hormone-refractory prostate cancer. Cancer Res 68:9024–9032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hsu YL, Cho CY, Kuo PL, Huang YT, Lin CC (2006) Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharm Exp Ther 318:484–494

    Article  CAS  Google Scholar 

  64. Gomathinayagam R, Sowmyalakshmi S, Mardhatillah F, Kumar R (2008) AkbarshaMA, Damodaran C. Anticancer mechanism of plumbagin, a natural compound, on non-small cell lung cancer cells. Anticancer Res 28:785–792

    CAS  PubMed  Google Scholar 

  65. Acharya BR, Bhattacharyya B, Chakrabarti G (2008) The natural naphthoquinone plumbagin exhibits ant proliferative activity and disrupts the microtubule network through tubulin binding. Biochemistry 47:7838–7845

    Article  CAS  PubMed  Google Scholar 

  66. Nair S, Nair RR, Srinivas P, Srinivas G, Pillai MR (2008) Radiosensitizing effects of plumbagin in cervical cancer cells is through modulation of apoptotic pathway. Mol Carcinog 47:22–33

    Article  CAS  PubMed  Google Scholar 

  67. Appadurai P, Rathinasamy K (2015) Plumbagin-silver nanoparticle formulations enhance the cellular uptake of plumbagin and its antiproliferative activities. IET Nanobiotechnol 9:264–272

    Article  PubMed  Google Scholar 

  68. Khaw AK, Sameni S, Venkatesan S, Kalthur G, Hande MP (2015) Plumbagin alters telomere dynamics, induces DNA damage and cell death in human brain tumour cells. Mutation Res/Genetic Toxicol Environ Mutagen 793:86–95

    Article  CAS  Google Scholar 

  69. Gou Y, Zhang Z, Qi J, Liang S, Zhou Z, Yang F, Liang H (2015) Folate-functionalized human serum albumin carrier for anticancer copper(II) complexes derived from natural plumbagin. J Inorg Biochem 153:13–22

    Article  CAS  PubMed  Google Scholar 

  70. Vijayakumar R, Senthilvelan M, Ravindran R (2006) Sheela Devi R. Plumbago zeylanica action on blood coagulation profile with and without blood volume reduction. Vascul Pharmacol 45:86–90

    Article  CAS  PubMed  Google Scholar 

  71. Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S (2012) Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:4356–4363

    Article  CAS  PubMed  Google Scholar 

  72. Lajubutu BA, Pinney RJ, Roberts MF, Odelola HA, Oso BA (1995) Antibacterial activity of diosquinone and plumbagin from the root of Diospyrosmespiliformis (Hostch) (Ebenaceae). Phytother Res 9:346–350

    Article  CAS  Google Scholar 

  73. de Paiva SR, Figueiredo MR, Aragão TV, Kaplan MA (2003) Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Memórias do Instituto Oswaldo Cruz 98:959–961

    Article  PubMed  Google Scholar 

  74. Renuga G, Babuthandapani A (2013) Evaluation on antimicrobial potential of root extracts Plumbago zeylanica L against human intestinal microflora. Int J Pharm Biol Res 4: 146–158

    Google Scholar 

  75. Kaewbumrung S, Panichayupakaranant P (2012) Isolation of three antibacterial naphthoquinones from Plumbago indica roots and development of a validated quantitative HPLC analytical method. Nat Prod Res 26:2020–2023

    Article  CAS  PubMed  Google Scholar 

  76. Kaewbumrung S, Panichayupakaranant P (2014) Antibacterial activity of plumbagin derivative-rich Plumbago indica root extracts and chemical stability. Nat Prod Res 28:835–837

    Article  CAS  PubMed  Google Scholar 

  77. Rondevaldova J, Novy P, Kokoska L (2015) In vitro combinatory antimicrobial effect of plumbagin with oxacillin and tetracycline against Staphylococcus aureus. Phytother Res 29:144–147

    Article  CAS  PubMed  Google Scholar 

  78. Kumar S1, Gautam S, Sharma A (2013) Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones. Mutatation Res 755:30–41

    Google Scholar 

  79. Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K (2014) Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 14:1–6. http://bmccomplementalternmed.biomedcentral.com/articles/10.1186/1472-6882-14-15

  80. Sumsakul W, Chaijaroenkul W, Na-Bangchang K (2015) In vitro inhibitory effects of plumbagin, the promising antimalarial candidate, on human cytochrome P450 enzymes. Asian Pac J Trop Med 8:914–918

    Article  CAS  PubMed  Google Scholar 

  81. Luo P, Wong YF, Ge L, Zhang ZF, Liu Y, Liu L, Zhou H (2010) Anti-inflammatory and analgesic effect of plumbagin through inhibition of nuclear factor-κB activation. J Pharmacol Exp Ther 335:735–742

    Google Scholar 

  82. Dhingra D, Bansal S (2015) Antidepressant-like activity of plumbagin in unstressed and stressed mice. Pharmacol Rep 67:1024–1032

    Article  CAS  PubMed  Google Scholar 

  83. Wei Y, Huang M, Liu X, Yuan Z, Peng Y, Huang Z, Duan X, Zhao T (2015) Anti-fibrotic effect of plumbagin on CCl4-Lesioned rats. Cell Physiol Biochem 35:1599–1608

    Article  CAS  PubMed  Google Scholar 

  84. Singh UV, Udupa N (1997) Reduced toxicity and enhanced antitumor efficacy of betacyclodextrin plumbagin inclusion complex in mice bearing Ehrlich ascites carcinoma. Indian J Physiol Pharmacol 41:171–175

    CAS  PubMed  Google Scholar 

  85. Santhakumari G, Saralamma PG, Radhakrishnan N (1980) Effect of plumbagin on cell growth and mitosis. Indian J Exp Biol 18:215–218

    CAS  PubMed  Google Scholar 

  86. Edenharder R, Tang X (1997) Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem Toxicol 35:357–372

    Article  CAS  PubMed  Google Scholar 

  87. Farr SB, Natvig DO, Kogoma T (1985) Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol 164:1309–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  88. SivaKumar V, Prakash R, Murali MR, Devaraj H, NiranjaliDevaraj S (2005) In vivo micronucleus assay and GST activity in assessing genotoxicity of plumbagin in Swiss albino mice. Drug Chem Toxicol 28:499–507

    Article  CAS  PubMed  Google Scholar 

  89. Raja Naresh RA, Udupa N, Uma Devi P (1996) Niosomal plumbagin with reduced toxicity and improved anticancer activity in BALB/C mice. J Pharm Pharmacol 48:1128–1132

    Google Scholar 

  90. Kini DP, Pandey S, Shenoy BD, Singh UV, Udupa N, Umadevi P, Kamath R (1997) Nagarajkumari, Ramanarayan K. Antitumor, and antifertility activities of plumbagin controlled release formulations. Indian J Exp Biol 35:374–379

    CAS  PubMed  Google Scholar 

  91. Singh UV, Bisht KS, Rao S, Uma Devi P, Udupa N (1997) Reduced toxicity, and enhanced antitumor efficacy of plumbagin using poly (Lactic-co-glycolic) biodegradable injectable implant. Indian J Pharmacol 29:168–172

    CAS  Google Scholar 

  92. Kumar MR, Aithal BK, Udupa N, Reddy MS, Raakesh V, Murthy RS, Raju DP, Rao BS (2011) Formulation of plumbagin loaded long circulating pegylated liposomes: in vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv 18:511–522

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pharkphoom Panichayupakaranant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panichayupakaranant, P., Ahmad, M.I. (2016). Plumbagin and Its Role in Chronic Diseases. In: Gupta, S., Prasad, S., Aggarwal, B. (eds) Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, vol 929. Springer, Cham. https://doi.org/10.1007/978-3-319-41342-6_10

Download citation

Publish with us

Policies and ethics