Skip to main content

Improving Re-annotation of Annotated Eukaryotic Genomes

  • Chapter
  • First Online:
Big Data Analytics in Genomics

Abstract

In the age of post-genomics, the task of improving existing annotation is one of the major challenge. The sequenced transcriptome allows to revisit the annotated sequenced genome of the corresponding organism and improve the existing gene models. In addition, misleading annotations propagate in multiple databases by comparative approaches of annotation, automatic annotation, and lack of curating power in the face of large data volume. In this pursuit, re-annotated improved gene models can prevent misleading structural and functional annotation of genes and proteins. In this chapter, we will highlight annotation and re-annotation procedures and will explain how annotations can be improved using computational methods. Our integrative workflow can be used to re-annotate genomes of any sequenced eukaryotic organism. We describe the annotation of splice sites, open reading frames, encoded proteins and peptides, hints for functional annotation including phylogenetic and domain analysis as well as critical evaluation of data transfer procedures, and the genome annotation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanger, F., Coulson, A. R., Friedmann, T., Air, G. M., Barrell, B. G., Brown, N. L., Fiddes, J.C., Hutchison, C.A., Slocombe, P.M and Smith, M. (1978). The nucleotide sequence of bacteriophage φX174. Journal of molecular biology (2),225–246.

    Google Scholar 

  2. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C.A., Holt, R.A. and Gocayne, J. D. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.

    Google Scholar 

  3. Hodkinson, B. P., and Grice, E. A. (2015). Next-generation sequencing: a review of technologies and tools for wound microbiome research. Advances in wound care, 4(1), 50–58.

    Google Scholar 

  4. Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next generation sequencing technologies for environmental DNA research. Molecular ecology, 21(8), 1794–1805.

    Google Scholar 

  5. Schweikert, G., Behr, J., Zien, A., Zeller, G., Ong, C. S., Sonnenburg, S., & Rätsch, G. (2009). mGene. web: a web service for accurate computational gene finding. Nucleic acids research, 37(suppl 2), W312–W316.

    Google Scholar 

  6. Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C. S., Philips, P., De Bona, F., Hartmann, L., Bohlen, A. and Krüger, N. (2009). mGene: accurate SVM-based gene finding with an application to nematode genomes. Genome research.

    Google Scholar 

  7. McCallum, D., and Smith, M. (1977). Computer processing of DNA sequence data. Journal of Molecular. Biology, 116, 29–30

    Google Scholar 

  8. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403–410.

    Google Scholar 

  9. Dayhoff, M. O., Schwartz, R. M., Chen, H. R., Barker, W. C., Hunt, L. T., and Orcutt, B. C. (1981). Nucleic acid sequence database. DNA, 1(1), 51–58.

    Google Scholar 

  10. Bilofsky, H. S., Burks, C., Fickett, J. W., Goad, W. B., Lewitter, F. I., Rindone, W. P., Swindell, C.D and Tung, C. S. (1986). The GenBank genetic RNA sequence databank. Nucleic acids research, 14(1), 1–4.

    Google Scholar 

  11. Lewis, S., Ashburner, M., and Reese, M. G. (2000). Annotating eukaryote genomes. Current opinion in structural biology, 10(3), 349–354.

    Google Scholar 

  12. Dandekar T, Huynen M, Regula JT, Ueberle B, Zimmermann CU, Andrade MA, Doerks T, Sánchez-Pulido L, Snel B, Suyama M, Yuan YP, Herrmann R, Bork P. (2000) Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res. 28(17), 3278–88.

    Google Scholar 

  13. Gaudermann P, Vogl I, Zientz E, Silva FJ, Moya A, Gross R, Dandekar T. (2006) Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus. BMC Microbiology. 6, 1.

    Google Scholar 

  14. DeCaprio, D., Vinson, J. P., Pearson, M. D., Montgomery, P., Doherty, M., and Galagan, J. E. (2007). Conrad: gene prediction using conditional random fields. Genome research, 17(9), 1389–1398.

    Google Scholar 

  15. Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004, July). Support vector machine learning for interdependent and structured output spaces. In Proceedings of the twenty-first international conference on Machine learning (p. 104). ACM.

    Google Scholar 

  16. Bulyk, M. L. (2004). Computational prediction of transcription-factor binding site locations. Genome biology, 5(1), 201–201.

    Google Scholar 

  17. Pavesi, G., Mauri, G., and Pesole, G. (2004). In silico representation and discovery of transcription factor binding sites. Briefings in Bioinformatics, 5(3), 217–236.

    Google Scholar 

  18. Elsik, C. G., Worley, K. C., Bennett, A. K., Beye, M., Camara, F., Childers, C. P., de Graaf, D.C., Debyser, G., Deng, J., Devreese, B. and Elhaik, E. (2014). Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC genomics, 15(1), 86.

    Google Scholar 

  19. Gupta, S. K., Kupper, M., Ratzka, C., Feldhaar, H., Vilcinskas, A., Gross, R., Dandekar, T. and Förster, F. (2015). Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing. BMC genomics, 16(1), 540.

    Google Scholar 

  20. Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C. and Zhang, P. (2010). Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329(5995), 1068–1071.

    Google Scholar 

  21. Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In AI 2006: Advances in Artificial Intelligence (pp. 1015–1021). Springer Berlin Heidelberg.

    Google Scholar 

  22. Guigó Serra, R., Flicek, P., Abril Ferrando, J. F., Reymond, A., Lagarde, J., Denoeud, F., Antonarakis, S., Ashburner, M., Bajic, V.B., Birney, E. and Castelo, R. (2006). EGASP: the human ENCODE Genome Annotation Assessment Project. Guigó R, Reese MG, editors. EGASP’05: ENCODE genome annotation assessment Project. Genome biology. 2006; 7 Suppl 1.

    Google Scholar 

  23. Coghlan, A., Fiedler, T. J., McKay, S. J., Flicek, P., Harris, T. W., Blasiar, D., and Stein, L. D. (2008). nGASP–the nematode genome annotation assessment project. BMC bioinformatics, 9(1).

    Google Scholar 

  24. Mathé, C., Sagot, M. F., Schiex, T., and Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic acids research, 30(19), 4103–4117.

    Google Scholar 

  25. Keller, O., Kollmar, M., Stanke, M., and Waack, S. (2011). A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics, 27(6), 757–763.

    Google Scholar 

  26. Zickmann, F., and Renard, B. Y. (2015). IPred-integrating ab initio and evidence based gene predictions to improve prediction accuracy. BMC genomics, 16(1).

    Google Scholar 

  27. Stanke, M., Schöffmann, O., Morgenstern, B., and Waack, S. (2006). Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC bioinformatics, 7(1), 62.

    Google Scholar 

  28. Solovyev V.V. (2007) Statistical approaches in Eukaryotic gene prediction. In Handbook of Statistical genetics (eds. Balding D., Cannings C., Bishop M.), Wiley-Interscience; 3d edition, 1616 p

    Google Scholar 

  29. Yao, H., Guo, L., Fu, Y., Borsuk, L. A., Wen, T. J., Skibbe, D. S., Cui, X., Scheffler, B.E., Cao, J., Emrich, S.J. and Ashlock, D. A. (2005). Evaluation of five ab initio gene prediction programs for the discovery of maize genes. Plant molecular biology, 57(3), 445–460.

    Google Scholar 

  30. Solovyev, V., Kosarev, P., Seledsov, I., & Vorobyev, D. (2006). Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biology, 7(Suppl 1), S10.

    Google Scholar 

  31. Foissac, S., Gouzy, J., Rombauts, S., Mathé, C., Amselem, J., Sterck, L., de Peer, Y.V., Rouzé, P.& Schiex, T. (2008). Genome annotation in plants and fungi: EuGene as a model platform. Current Bioinformatics, 3(2), 87–97.

    Google Scholar 

  32. Burge, C., & Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. Journal of molecular biology, 268(1), 78–94.

    Google Scholar 

  33. Allen, J. E., Majoros, W. H., Pertea, M., and Salzberg, S. L. (2006). JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biology, 7(Suppl 1), 1–13.

    Google Scholar 

  34. Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 20(16), 2878–2879.

    Google Scholar 

  35. Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 9(1), R7.

    Google Scholar 

  36. Eckalbar, W. L., Hutchins, E. D., Markov, G. J., Allen, A. N., Corneveaux, J. J., Lindblad-Toh, K., Di Palma, F., Alföldi, J., Huentelman, M.J. and Kusumi, K. (2013). Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC genomics, 14(1), 49.

    Google Scholar 

  37. Lorenzi, H. A., Puiu, D., Miller, J. R., Brinkac, L. M., Amedeo, P., Hall, N., and Caler, E. V. (2010). New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Neglected Tropical Diseases, 4(6), e716.

    Google Scholar 

  38. Cantarel, B. L., Korf, I., Robb, S. M., Parra, G., Ross, E., Moore, B., Holt, C., Alvarado, A.S & Yandell, M. (2008). MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research, 18(1), 188–196.

    Google Scholar 

  39. Darwish, O., Shahan, R., Liu, Z., Slovin, J. P., and Alkharouf, N. W. (2015). Re-annotation of the woodland strawberry (Fragaria vesca) genome. BMC genomics, 16(1), 29.

    Google Scholar 

  40. Smith, C. R., Smith, C. D., Robertson, H. M., Helmkampf, M., Zimin, A., Yandell, M., Holt, C., Hu, H., Abouheif, E., Benton, R. & Cash, E. (2011). Draft genome of the red harvester ant Pogonomyrmex barbatus. PNAS, 108(14), 5667–5672.

    Google Scholar 

  41. Eilbeck, K., Moore, B., Holt, C., & Yandell, M. (2009). Quantitative measures for the management and comparison of annotated genomes. BMC bioinformatics, 10(1), 1.

    Google Scholar 

  42. Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D., & Antin, P. (2016). The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLoS Biol, 14(1), e1002342.

    Google Scholar 

  43. Soderlund, C. A., Nelson, W. M., & Goff, S. A. (2014). Allele Workbench: transcriptome pipeline and interactive graphics for allele-specific expression. PloS one, 9(12), e115740.

    Google Scholar 

  44. Reid, J. G., Carroll, A., Veeraraghavan, N., Dahdouli, M., Sundquist, A., English, A., & Yu, F. (2014). Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline. BMC bioinformatics, 15(1), 1.

    Google Scholar 

  45. Krampis, K., Booth, T., Chapman, B., Tiwari, B., Bicak, M., Field, D., & Nelson, K. E. (2012). Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community. BMC bioinformatics, 13(1), 1.

    Google Scholar 

  46. Brenner, S. E. (1999). Errors in genome annotation. Trends in Genetics, 15(4), 132–133.

    Google Scholar 

  47. Devos, D., and Valencia, A. (2001). Intrinsic errors in genome annotation. TRENDS in Genetics, 17(8), 429–431.

    Google Scholar 

  48. Rost, B. (2002). Enzyme function less conserved than anticipated. Journal of molecular biology, 318(2), 595–608.

    Google Scholar 

  49. Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A. and Salazar, G. A. (2015). The Pfam protein families database: towards a more sustainable future. Nucleic acids research, gkv1344.

    Google Scholar 

  50. Letunic, I., Doerks, T., and Bork, P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic acids research, 43(D1), D257–D260.

    Google Scholar 

  51. Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G. and Pesseat, S. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240.

    Google Scholar 

  52. Mitchell, A., Chang, H. Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S and Sangrador-Vegas, A. (2014). The InterPro protein families database: the classification resource after 15 years. Nucleic acids research, gku1243.

    Google Scholar 

  53. Koski, L. B., Gray, M. W., Lang, B. F., & Burger, G. (2005). AutoFACT: an automatic functional annotation and classification tool. BMC bioinformatics, 6(1), 151.

    Google Scholar 

  54. Conesa, A., and Götz, S. (2008). BLAST2GO: A comprehensive suite for functional analysis in plant genomics. International journal of plant genomics, 2008.

    Google Scholar 

  55. Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M. (2005). BLAST2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674–3676.

    Google Scholar 

  56. Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y., and Vandepoele, K. (2009). PLAZA: a comparative genomics resource to study gene and genome evolution in plants. The Plant Cell, 21(12), 3718–3731.

    Google Scholar 

  57. Van Bel, M., Proost, S., Wischnitzki, E., Movahedi, S., Scheerlinck, C., Van de Peer, Y., and Vandepoele, K. (2011). Dissecting plant genomes with the PLAZA comparative genomics platform. Plant physiology, pp 111.

    Google Scholar 

  58. Zhao, Q. Y., Wang, Y., Kong, Y. M., Luo, D., Li, X., and Hao, P. (2011). Optimizing de novo transcriptome assembly from short-read RNA-seq data: a comparative study. BMC bioinformatics, 12(Suppl 14), S2.

    Google Scholar 

  59. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., and Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191.

    Google Scholar 

  60. Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one, 5(3), e9490.

    Google Scholar 

  61. Chen, F., Mackey, A. J., Stoeckert, C. J., and Roos, D. S. (2006). OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic acids research, 34(suppl 1), D363–D368.

    Google Scholar 

  62. Van Bel, M., Proost, S., Van Neste, C., Deforce, D., Van de Peer, Y., and Vandepoele, K. (2013). TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-seq transcriptomes. Genome Biology, 14(12), R134.

    Google Scholar 

  63. Kanehisa, M., Sato, Y., and Morishima, K. (2015). BLASTKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology.

    Google Scholar 

  64. Usadel, B., Poree, F., Nagel, A., Lohse, M., Czedikeysenberg, A and Stitt, M. (2009). A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant, cell and environment, 32(9), 1211–1229.

    Google Scholar 

  65. Lohse, M., Nagel, A., Herter, T., May, P., Schroda, M., Zrenner, R., Tohge, T., Fernie, A.R., Stitt, M. and Usadel, B. (2014). Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, cell and environment, 37(5), 1250–1258.

    Google Scholar 

  66. Phillippy, A. M., Schatz, M. C., and Pop, M. (2008). Genome assembly forensics: finding the elusive mis-assembly. Genome Biology, 9(3), R55.

    Google Scholar 

  67. Pop, M., and Salzberg, and S. L. (2008). Bioinformatics challenges of new sequencing technology. Trends in Genetics, 24(3), 142–149.

    Google Scholar 

  68. Parra, G., Bradnam, K., Ning, Z., Keane, T., and Korf, I. (2009). Assessing the gene space in draft genomes. Nucleic acids research, 37(1), 289–297.

    Google Scholar 

  69. Smit, A. F., Hubley, R., & Green, P. (1996). RepeatMasker. Published on the web at http://www.repeatmasker.org .

  70. Smit, A. F. A., & Hubley, R. (2010). RepeatModeler Open-1.0. Repeat Masker Website.

    Google Scholar 

  71. Haas, B. J., Delcher, A. L., Mount, S. M., Wortman, J. R., Smith Jr, R. K., Hannick, L. I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D & Salzberg, S. L. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic acids research, 31(19), 5654–5666.

    Google Scholar 

  72. Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. Genome research, 12(4),656–664.

    Google Scholar 

  73. Keller, O., Odronitz, F., Stanke, M., Kollmar, M., & Waack, S. (2008). Scipio: using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC bioinformatics, 9(1), 278.

    Google Scholar 

  74. Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and Genomewise. Genome research, 14(5), 988–995.

    Google Scholar 

  75. Finn, R. D., Clements, J., and Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic acids research, gkr367.

    Google Scholar 

  76. Parra, G., Bradnam, K., & Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23(9), 1061–1067.

    Google Scholar 

  77. Parra, G., Blanco, E., and Guigó, R. (2000). GeneID in drosophila. Genome research, 10(4), 511–515.

    Google Scholar 

  78. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36.

    Google Scholar 

  79. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357–359.

    Google Scholar 

  80. Rawat, V., Abdelsamad, A., Pietzenuk, B., Seymour, D. K., Koenig, D., Weigel, D., Pecinka, A. and Schneeberger, K. (2015). Improving the Annotation of Arabidopsis lyrata Using RNA-seq Data. PloS one, 10(9), e0137391.

    Google Scholar 

  81. Isaza, J. P., Galván, A. L., Polanco, V., Huang, B., Matveyev, A. V., Serrano, M. G., Manque, P., Buck, G.A. and Alzate, J. F. (2015). Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference. Scientific reports, 5.

    Google Scholar 

  82. Misra, S., Crosby, M. A., Mungall, C. J., Matthews, B. B., Campbell, K. S., Hradecky, P., Huang, Y., Kaminker, J.S., Millburn, G.H., Prochnik, S.E. and Smith, C. D. (2002). Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome biology, 3(12), research0083

    Google Scholar 

  83. van den Berg, B. H., McCarthy, F. M., Lamont, S. J., and Burgess, S. C. (2010). Re-annotation is an essential step in systems biology modeling of functional genomics data. PLoS One, 5(5), e10642.

    Google Scholar 

  84. Li, L., Chen, E., Yang, C., Zhu, J., Jayaraman, P., De Pons, J., Kaczorowski, C.C., Jacob, H.J., Greene, A.S., Hodges, M.R. & Cowley, A. W. (2015). Improved rat genome gene prediction by integration of ESTs with RNA-Seq information. Bioinformatics, 31(1), 25–32.

    Google Scholar 

  85. Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo, M., and Pakula, T. M. (2012). Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 11(1), 134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, S.K., Bencurova, E., Srivastava, M., Pahlavan, P., Balkenhol, J., Dandekar, T. (2016). Improving Re-annotation of Annotated Eukaryotic Genomes. In: Wong, KC. (eds) Big Data Analytics in Genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-41279-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41279-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41278-8

  • Online ISBN: 978-3-319-41279-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics