Skip to main content

Optimal Control of Vaccination in an Age-Structured Cholera Model

  • Chapter
  • First Online:
Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases

Abstract

A cholera model with continuous age structure is given as a system of hyperbolic (first-order) partial differential equations (PDEs) in combination with ordinary differential equations. Asymptomatic infected and susceptibles with partial immunity are included in this epidemiology model with vaccination rate as a control; minimizing the symptomatic infecteds while minimizing the cost of the vaccinations represents the goal. With the method of characteristics and a fixed point argument, the existence of a solution to our nonlinear state system is achieved. The representation and existence of a unique optimal control are derived. The steps to justify the optimal control results for such a system with first order PDEs are given. Numerical results illustrate the effect of age structure on optimal vaccination rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, J.R., Basu, S.: Transmission dynamics and control of cholera in haiti: an epidemic model. Lancet 377, 1248–1255 (2011)

    Article  Google Scholar 

  2. Anita, S.: Optimal harvesting for a nonlinear age-dependent population dynamics. J. Math. Anal. Appl. 226, 6–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anita, S.: Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordretcht (2000)

    Book  MATH  Google Scholar 

  4. Barbu, V.: Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  5. Barbu, V., Iannelli, M.: Optimal control of population dynamics. J Optim. Theory Appl. 102, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Codeco, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)

    Article  Google Scholar 

  7. Codeco, C.T., Coelho, F.C.: Trends in cholera epidemiology. PLoS Med 3, e42 (2006)

    Article  Google Scholar 

  8. Eisenberg, M.C., Kujbida, G., Tuite, A.R., Fisman, D.N., Tien, J.H.: Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 5, 197–207 (2013)

    Article  Google Scholar 

  9. Eisenberg, M.C., Shuai, Z., Tien, J.H., van den Driessche, P.: A cholera model in a patchy environment with water and human movement. Math. Biosci. 246, 105–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fister, K.R., Lenhart, S.: Optimal control of a competitive system with age-structure. J. Math. Anal. 291, 526–537 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fister, K.R., Lenhart, S.: Optimal harvesting in an age-structured predator-prey model. Appl. Math. Optim. 54, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glass, R.I., Becker, S., Huq, M.I., Stoll, B.J., Khan, M.U., Merson, M.H., Lee, J.V., Black, R.E.: Endemic cholera in rural Bangladesh, 1966–1980. Am. J. Epidemiol. 116, 959–970 (1982)

    Google Scholar 

  14. Glass, R.I., Svennerholm, A.M., Stoll, B.J., Khan, M.R., Hossain, K.M., Huq, M.I., Holmgren, J.: Protection against cholera in breast-fed children by antibodies in breast milk. New Engl. J. Med. 308, 1389–1392 (1983)

    Article  Google Scholar 

  15. Glass, R.I., Svennerholm, A.M., Stoll, B.J., Khan, M.R., Huda, S., Huq, M.I., Holmgren, J.: Effects of undernutrition on infection with vibrio cholerae o1 and on response to oral cholera vaccine. Pediatr. Infect. Dis. J. 8, 105–109 (1989)

    Google Scholar 

  16. Grad, Y.H., Miller, J.C., Lipsitch, M.: Cholera modeling: challenges to quantitative analysis and predicting the impact of interventions. Epidemiology (Cambridge, Mass) 23, 523 (2012)

    Article  Google Scholar 

  17. Hackbush, W.K.: A numerical method for solving parabolic equations with opposite orientation. Computing, pp. 229–240 (1978)

    Google Scholar 

  18. Hartley, D.M., Morris Jr., J.G., Smith, D.L.: Hyperinfectivity: A critical element in the ability of v. cholerae to cause epidemics? PLoS Med 3, e7 (2005)

    Article  Google Scholar 

  19. Ivers, L.C., Teng, J.E., Lascher, J., Raymond, M., Weigel, J., Victor, N., Jerome, J.D., Hilaire, I.J., Amazor, C.P., Ternier, R., Cadet, J., Francois, J., Guillaume, F.D., Farmer, P.E.: Use of oral cholera vaccine in Haiti: a rural demonstration project. Am. J. Trop. Med. Hyg. 89, 617–624 (2013)

    Article  Google Scholar 

  20. Jeuland, M., Cook, J., Poulos, C., Clemens, J., Whittington, D.: Cost effectiveness of new generation oral cholera vaccines: a multisite analysis. Value Health 12, 899–907 (2009)

    Article  Google Scholar 

  21. Kaper, J.B., Morris Jr., J.G., Levine, M.M.: Cholera. Clin. Microbio. Rev. 8, 48–86 (1995)

    Google Scholar 

  22. King, A.A., Ionides, E.L., Pascual, M., Bouma, M.J.: Inapparent infections and cholera dynamics. Nature 454, 877–880 (2008)

    Article  Google Scholar 

  23. Koelle, K., Rodo, X., Nad Md Yunus, M.P., Mostafa, G.: Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005)

    Article  Google Scholar 

  24. Laxminarayan, R.: Bacterial resistance and the optimal use of antibiotics. Technical Report 1–23 (2001)

    Google Scholar 

  25. Lenhart, S., Liang, M., Protopopescu, V.: Optimal control of boundary habitat hostility of interacting species. Math. Methods Appl. Sci. 22, 1061–1077 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. Chapman Hall/CRC, Boca Raton (2007)

    MATH  Google Scholar 

  27. Leung, A.W.: Optimal harvesting coefficient control of a steady-state prey-predator diffusive Lotka-Volterra system. Appl. Math. Optim. 31, 219–241 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  29. Lions, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhauser, Boston (1995)

    Google Scholar 

  30. Longini, I.M., Yunus, M., Zaman, K., Siddique, A., Sack, R.B., Nizam, A.: Epidemic and endemic cholera trends over a 33-year period in bangladesh. J. Infect. Dis. 186, 246–251 (2002)

    Article  Google Scholar 

  31. Merrell, D., Butler, S., Qadri, F., Dolganov, N., Alam, A., Cohen, M., Calderwood, S., Schoolnik, G., Camilli, A.: Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–5 (2002)

    Article  Google Scholar 

  32. Miller Neilan, R.L., Schaefer, E., Gaff, H., Fister, K.R., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72, 2004–2018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 20082009 cholera outbreaks in Zimbabwe. Proc. Nat. Acad. Sci. 108, 8767–8772 (2011)

    Article  Google Scholar 

  34. Naficy, A., Rao, M.R., Paquet, C., Antona, D., Sorkin, A., Clemens, J.D.: Treatment and vaccination strategies to control cholera in sub-saharan refugee settings. JAMA J. Am. Med. Assoc. 279, 521–525 (1998)

    Article  Google Scholar 

  35. Neilan, R.M., Lenhart, S.: Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons. J. Math. Anal. Appl. 378, 603–619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nelson, E.J., Harris, J.B., Morris, J.G., Calderwood, S.B., Camilli, A.: Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol. 7, 693–702 (2009)

    Article  Google Scholar 

  37. Numfor, E., Bhattacharya, S., Lenhart, S., Martcheva, M.: Optimal control applied in coupled within-host and between-host models. Math. Modell. Nat. Phenom. 9, 171–203 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Organization, W.H.: Cholera vaccines: who position paper. Wkly. Epidemiol. Rec. 85, 117–128 (2010)

    Google Scholar 

  39. Posny, D., Wang, J.: Modelling cholera in periodic environments. J. Biol. Dyn. 8, 1–19 (2014)

    Article  MathSciNet  Google Scholar 

  40. Qureshi, K., Molbak, K., Sandstrom, A., Kofoed, P.E., Rodrigues, A., Dias, F., Aaby, P., Svennerholm, A.M.: Breast milk reduces the risk of illness in children of mothers with cholera: observations from an epidemic of cholera in guinea-bissau. Pediatr. Infect. Dis. J. 25, 1163–1166 (2006)

    Article  Google Scholar 

  41. Rinaldo, A., Bertuzzo, E., Mari, L., Righetto, L., Blokesch, M., Gatto, M., Casagrandi, R., Murray, M., Vesenbeckh, S.M., Rodriguez-Iturbe, I.: Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. 109, 6602–6607 (2012)

    Article  Google Scholar 

  42. Shuai, Z., van den Driessche, P.: Global stability of infectious disease models using lyapunov functions. SIAM J. Appl. Math. 73, 1513–1532 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tian, J.P., Wang, J.: Global stability for cholera epidemic models. Math. Biosci. 232, 31–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tien, J., Earn, D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tien, J.H., Poinar, H.N., Fisman, D.N., Earn, D.J.D.: Herald waves of cholera in nineteenth century London. J. R. Soc. Interface 8, 756–760 (2011)

    Article  Google Scholar 

  46. Tuite, A.R., Tien, J., Eisenberg, M., Earn, D.J., Ma, J., Fisman, D.N.: Cholera epidemic in Haiti, 2010: using a transmission model to explain spatial spread of disease and identify optimal control interventions. Ann. Intern. Med. 154, 593–601 (2011)

    Article  Google Scholar 

  47. Wang, J., Liao, S.: A generalized cholera model and epidemic-endemic analysis. J. Biol. Dyn. 6, 568–589 (2012)

    Article  MathSciNet  Google Scholar 

  48. Walton, D., Suri, A., Farmer, P.: Cholera in Haiti: fully integrating prevention and care. Ann. Intern. Med. 154, 635–637 (2011)

    Article  Google Scholar 

  49. Wang, X., Gao, D., Wang, J.: Influence of human behavior on cholera dynamics. Math. Biosci. 267, 41–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Webb, G.: Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation DMS-0813563. Lenhart’s support also included funding from the National Institute for Mathematical and Biological Synthesis NSF EF-0832858. Wang’s work was partially supported by National Science Foundation DMS-1412826. We thanks Boloye Gomero for her initial work with the graphic for the description of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lenhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fister, K.R., Gaff, H., Lenhart, S., Numfor, E., Schaefer, E., Wang, J. (2016). Optimal Control of Vaccination in an Age-Structured Cholera Model. In: Chowell, G., Hyman, J. (eds) Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-40413-4_14

Download citation

Publish with us

Policies and ethics