Skip to main content

Phytoremediation of Arsenic-Contaminated Soils Using Arsenic Hyperaccumulating Ferns

  • Chapter
  • First Online:
Phytoremediation

Abstract

Arsenic contamination of soils is a global environmental, agricultural, and health issue given to the toxic and carcinogenic nature of As. Several anthropogenic activities, such as mining and smelting, coal combustion, wood preservation, leather tanning operations, and use of As-based pesticides in agriculture, have led to elevated concentrations of As in soil. Therefore, remediation and restoration of As-contaminated soils is imperative for providing safe food and healthy soils. In contrast to conventional (physicochemical) remediation methods, phytoremediation of As-contaminated soils using As-hyperaccumulating fern species has emerged as an eco-friendly, cost-effective, and efficient technology. Since the discovery of As-hyperaccumulator, Pteris vittata L., several other As-hyperaccumulating fern species have been identified in Pteris and Pityrogramma genera which demonstrated the ability to remove As from soil. This review will briefly discuss about the As dynamics and availability in soil; elucidate the mechanisms involved in As tolerance and (hyper)accumulation by ferns/plants for improving the phytoremediation efficiency; evaluate the capacity of As-hyperaccumulating fern species (e.g., P. vittata, Pityrogramma calomelanos) for phytoremediation of As-contaminated soils under pot and field conditions; and discuss how phosphate amendments, microbes, and agronomic practices can increase phytoremediation efficiency of the ferns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niazi NK, Bishop TFA, Singh B (2011) Evaluation of spatial variability of soil arsenic adjacent to a disused cattle-dip site, using model-based geostatistics. Environ Sci Technol 45:10463–10470. doi:10.1021/es201726c

    Article  CAS  PubMed  Google Scholar 

  2. Niazi NK, Singh B, Minasny B (2015) Mid-infrared spectroscopy and partial least-squares regression to estimate soil arsenic at a highly variable arsenic-contaminated site. Int J Environ Sci Technol 12:1965–1974. doi:10.1007/s13762-014-0580-5

    Article  CAS  Google Scholar 

  3. Lessl JT, Luo J, Ma LQ (2014) Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. J Hazard Mater 279:485–492. http://dx.doi.org/10.1016/j.jhazmat.2014.06.056

    Google Scholar 

  4. Niazi NK, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142. doi:10.1021/es201677z

    Article  CAS  PubMed  Google Scholar 

  5. Niazi NK, Singh B, Zwieten LV, Kachenko AG (2012) Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environ Sci Pollut Res 19:3506–3515. doi:10.1007/s11356-012-0910-4

    Article  CAS  Google Scholar 

  6. Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390. doi:10.3390/ijerph121012371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (2006) Managing arsenic in the environment: from soil to human health. CSIRO, Collingwood

    Google Scholar 

  8. Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  PubMed  Google Scholar 

  9. Feldmann J (2001) Appetite for arsenic. Chem Br 37:31–32

    CAS  Google Scholar 

  10. USEPA (2001) In: U.S.E.P.A. Workshop on managing arsenic risks to the environment: Characterization of waste, chemistry, and treatment and disposal, May 2001, Denver, CO, pp 107. http://www.epa.gov/ord/NRMRL/pubs/625r03010/625r03010total.pdf

  11. Singh AP, Goel RK, Kaur T (2011) Mechanisms pertaining to arsenic toxicity. Toxicol Int 18:87

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chou W-C, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A 101:4578–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63:90–101

    Article  CAS  Google Scholar 

  14. Frankenberger W (2002) Arsenic (V)/(III) cycling in soils and natural waters: chemical and microbiological processes. Marcel Dekker, New York

    Google Scholar 

  15. Rahman MA, Reichman SM, De Filippis L, Sany SBT, Hasegawa H (2016) Phytoremediation of toxic metals in soils and wetlands: concepts and applications. Environmental remediation technologies for metal-contaminated soils. Springer, Berlin, pp 161–195

    Book  Google Scholar 

  16. Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic—a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  17. Niazi NK (2011) Variability speciation and phytoremediation of soil arsenic at cattle dip sites in NSW, Australia. PhD thesis, The University of Sydney, Australia

    Google Scholar 

  18. Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T (2006) Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study. Int J Phytoremediation 8:311–322. doi:10.1080/15226510600992873

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Donahoe RJ (2007) The form, distribution and mobility of arsenic in soils contaminated by arsenic trioxide, at sites in southeast USA. Appl Geochem 22:320–341. doi:10.1016/j.apgeochem.2006.11.005

    Article  CAS  Google Scholar 

  20. Devesa-Rey R, Paradelo R, Diaz-Fierros F, Barral MT (2008) Fractionation and bioavailability of arsenic in the bed sediments of the Anllons River (NW Spain). Water Air Soil Pollut 195:189–199. doi:10.1007/s11270-008-9739-3

    Article  CAS  Google Scholar 

  21. Ko BG, Anderson CWN, Bolan NS, Huh KY, Vogeler I (2008) Potential for the phytoremediation of arsenic-contaminated mine tailings in Fiji. Aust J Soil Res 46:493–501. doi:10.1071/sr07200

    Article  CAS  Google Scholar 

  22. Novoa-Munoz JC, Queijeiro JMG, Blanco-Ward D, Alvarez-Olleros C, Garcia-Rodeja E, Martinez-Cortizas A (2007) Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Sci Total Environ 378:18–22. doi:10.1016/j.scitotenv.2007.01.026

    Article  CAS  PubMed  Google Scholar 

  23. Smith E, Naidu R, Alston AM (1998) Arsenic in the soil environment: a review. Adv Agron 64:149–195

    Article  CAS  Google Scholar 

  24. Xu W, Kachenko AG, Singh B (2010) Effect of soil properties on arsenic hyperaccumulation in Pteris vittata L. and Pityrogramma calomelanos var. austroamericana. Int J Phytoremediation 12:174–187

    Article  CAS  PubMed  Google Scholar 

  25. Al-Abed SR, Jegadeesan G, Purandare J, Allen D (2007) Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66:775–782. doi:10.1016/j.chemosphere.2006.07.045

    Article  CAS  PubMed  Google Scholar 

  26. Carbonell-Barrachina AA, Jugsujinda A, Burlo F, Delaune RD, Patrick WH (2000) Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res 34:216–224

    Article  CAS  Google Scholar 

  27. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  28. Masscheleyn PH, Delaune RD, Patrick WH (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  29. Grafe M, Sparks DL (2006) Solid phase speciation of arsenic. In: Smith E, Owens G, Bhattacharya P, Nadebaum P, Naidu R (eds) Managing arsenic in the environment. From soil to human health. CSIRO, Collingwood, pp 75–91

    Google Scholar 

  30. Smith E, Naidu R, Alston AM (1999) Chemistry of arsenic in soils: I. Sorption of arsenate and arsenite by four Australian soils. J Environ Qual 28:1719–1726

    Article  CAS  Google Scholar 

  31. Xiao R, Bai J, Lu Q, Zhao Q, Gao Z, Wen X, Liu X (2015) Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China. Sci Total Environ 517:66–75. doi:10.1016/j.scitotenv.2015.02.052

    Article  CAS  PubMed  Google Scholar 

  32. O’Reilly SE, Strawn DG, Sparks DL (2001) Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J 65:67–77

    Article  Google Scholar 

  33. Sun XH, Doner HE (1996) An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Sci 161:865–872

    Article  CAS  Google Scholar 

  34. Sun XH, Doner HE (1998) Adsorption and oxidation of arsenite on goethite. Soil Sci 163:278–287

    Article  CAS  Google Scholar 

  35. Violante A, Del Gaudio S, Pigna M, Ricciardella M, Banerjee D (2007) Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron(III) precipitates. Environ Sci Technol 41:8275–8280. doi:10.1021/es070382

    Article  CAS  PubMed  Google Scholar 

  36. Goh K-H, Lim T-T (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Appl Geochem 20:229–239

    Article  CAS  Google Scholar 

  37. Frau F, Biddau R, Fanfani L (2008) Effect of major anions on arsenate desorption from ferrihydrite-bearing natural samples. Appl Geochem 23:1451–1466

    Article  CAS  Google Scholar 

  38. Meng XG, Korfiatis GP, Bang SB, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  CAS  PubMed  Google Scholar 

  39. Stachowicz M, Hiemstra T, van Riemsdijk WH (2008) Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO4 3−, and CO3 2− ions on goethite. J Colloid Interface Sci 320:400–414. doi:10.1016/j.jcis.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  40. Violante A, Pigna M (2002) Competitive sorption pf arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J 66:1788–1796

    Article  CAS  Google Scholar 

  41. Grafe M, Eick MJ, Grossl PR (2001) Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65:1680–1687

    Article  CAS  Google Scholar 

  42. Grafe M, Eick MJ, Grossl PR, Saunders AM (2002) Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J Environ Qual 31:1115–1123

    Article  CAS  PubMed  Google Scholar 

  43. Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2008) Effects of amended compost on mobility and uptake of arsenic by rye grass in contaminated soil. Chemosphere 72:1056–1061. doi:10.1016/j.chemosphere.2008.03.048

    Article  CAS  PubMed  Google Scholar 

  44. Gustafsson JP (2006) Arsenate adsorption to soils: modelling the competition from humic substances. Geoderma 136:320–330. doi:10.1016/j.geoderma.2006.03.046

    Article  CAS  Google Scholar 

  45. Lin HT, Wang MC, Seshalah K (2008) Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost. Chemosphere 71:742–749. doi:10.1016/j.chemosphere.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  46. Sisr L, Mihaljevic M, Ettler V, Strnad L, Sebek O (2007) Effect of application of phosphate and organic manure-based fertilizers on arsenic transformation in soil columns. Environ Monit Assess 135:465–473. doi:10.1007/s10661-007-9666-6

    Article  CAS  PubMed  Google Scholar 

  47. Wang SL, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health 28:197–214. doi:10.1007/s10653-005-9032-y

    Article  CAS  PubMed  Google Scholar 

  48. McLaren RG, Megharaj M, Naidu R (2006) Fate of arsenic in the soil environment. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Collingwood, pp 157–182

    Google Scholar 

  49. Frankenberger WT, Arshad M (2002) Volatilization of arsenic. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  50. Agely A, Sylvia D, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pterisvittata L.). J Environ Qual 34:2181–2186

    Article  PubMed  Google Scholar 

  51. Fitz WJ, Wenzel WW (2006) Sequestration of arsenic by plants. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Collingwood, pp 209–222

    Google Scholar 

  52. Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic in crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343

    CAS  Google Scholar 

  53. Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  54. Anawar HM, Garcia-Sanchez A, Regina IS (2008) Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils. Chemosphere 70:1459–1467. doi:10.1016/j.chemosphere.2007.08.058

    Article  CAS  PubMed  Google Scholar 

  55. Smith E, Juhasz AL, Weber J (2009) Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environ Geochem Health 31:125–132. doi:10.1007/s10653-008-9242-1

    Article  CAS  PubMed  Google Scholar 

  56. Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466

    Article  CAS  Google Scholar 

  57. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44. doi:10.1046/j.1469-8137.2003.00655.x

    Article  CAS  Google Scholar 

  58. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722. doi:10.1046/j.0016-8025.2001.00721.x

    Article  CAS  Google Scholar 

  59. Kertulis-Tartar GM (2005) Arsenic hyperaccumulation by Pteris vittata L. and its potential for phytoremediation of arsenic contaminated soils. PhD thesis, University of Florida

    Google Scholar 

  60. Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342. doi:10.1093/jxb/eri134

    Article  CAS  PubMed  Google Scholar 

  61. Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668

    Article  CAS  Google Scholar 

  62. Glass DJ (1999) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 15–31

    Google Scholar 

  63. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141. doi:10.1016/j.copbio.2005.02.006

    Article  PubMed  Google Scholar 

  65. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57. doi:10.1016/0375-6742(77)90074-7

    Article  CAS  Google Scholar 

  66. Wild H (1974) Arsenic tolerant plant species established on arsenical mine dumps in Rhodesia. Kirkia 9:265–278

    Google Scholar 

  67. Brooks RR, Malaisse F (1985) Heavy metals in pteridophytes. In: The heavy metal-tolerant flora of South-Central Africa: a multidisciplinary approach. A.A. Balkema, Rotterdam

    Google Scholar 

  68. Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  PubMed  Google Scholar 

  69. Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  CAS  PubMed  Google Scholar 

  70. Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

  71. Meharg AA (2003) Variation in arsenic accumulation-hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  72. Wang HB, Ye ZH, Shu WS, Li WC, Wong MH, Lan CY (2006) Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys. Int J Phytoremediation 8:1–11. doi:10.1080/16226510500214517

    Article  CAS  PubMed  Google Scholar 

  73. Kachenko AG, Bhatia NP, Singh B, Siegele R (2007) Arsenic hyperaccumulation and localization in the pinnule and stipe tissues of the gold-dust fern (Pityrogramma calomelanos (L.)Linkvar. austroamericana (Domin) Farw. using quantitative micro-PIXE spectroscopy. Plant and Soil 300:207–219. doi:10.1007/s11104-007-9406-2

    Article  CAS  Google Scholar 

  74. Luu Thai D, Truong P, Mammucari R, Foster N (2014) A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris Vittata. Int J Phytoremediation 16:429–453. doi:10.1080/15226514.2013.798613

    Article  Google Scholar 

  75. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. doi:10.1146/annurev.arplant.49.1.643

    Article  CAS  PubMed  Google Scholar 

  76. Reina SV, Esteban E, Goldsbrough P (2005) Arsenate-induced phytochelatins in white lupin: influence of phosphate status. Physiol Plant 124:41–49. doi:10.1111/j.1399-3054.2005.00484.x

    Article  CAS  Google Scholar 

  77. Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345

    Article  CAS  PubMed  Google Scholar 

  78. Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177. doi:10.1104/pp.122.4.1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122. doi:10.1104/pp.103.033506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kachenko AG, Grafe M, Singh B, Heald SM (2010) Arsenic speciation in tissues of the hyperaccumulator P. calomelanos var. austroamericana using X-ray absorption spectroscopy. Environ Sci Technol 44:4735–4740. doi:10.1021/es1005237

    Article  CAS  PubMed  Google Scholar 

  81. Shetty K, Hetrick B, Figge D, Schwab A (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188

    Article  CAS  PubMed  Google Scholar 

  82. Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  83. Chaudhry T, Hayes W, Khan A, Khoo C (1998) Phytoremediation-focusing on accumulator plants that remediate metal-contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  84. Ka K, Firestone M (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    Article  Google Scholar 

  85. Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89:429–435

    Article  Google Scholar 

  86. El-Kherbawy M, Angle J, Heggo A, Chaney R (1989) Soil pH, rhizobia, and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fertil Soils 8:61–65

    Article  CAS  Google Scholar 

  87. Heggo A, Angle J, Chaney R (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  88. Meharg A (1994) Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  89. Wright W, Fitter A, Meharg A (2000) Reproductive biomass in Holcus lanatus clones that differ in their phosphate uptake kinetics and mycorrhizal colonization. New Phytol 146:493–501

    Article  Google Scholar 

  90. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  PubMed  Google Scholar 

  91. Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae Increase Arsenic Uptake by the Hyperaccumulator Chinese Brake Fern (L.). J Environ Qual 34:2181–2186

    Article  CAS  PubMed  Google Scholar 

  92. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  93. Singh N, Ma LQ (2007) Assessing plants for phytoremediation of arsenic-contaminated soils. Phytoremed Methods Rev 319–347

    Google Scholar 

  94. Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tu S, Ma L, MacDonald G, Bondada B (2004) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51:121–131

    Article  CAS  Google Scholar 

  96. Santos JA, Gonzaga MI, Ma LQ, Srivastava M (2008) Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Environ Pollut 154:306–311

    Article  CAS  PubMed  Google Scholar 

  97. Lessl JT, Ma LQ (2013) Sparingly-soluble phosphate rock induced significant plant growth and arsenic uptake by Pteris vittata from three contaminated soils. Environ Sci Technol 47:5311–5318. doi:10.1021/es400892a

    Article  CAS  PubMed  Google Scholar 

  98. Luikham E, Lhungdim J, Singh AI (2005) Influence of sources and levels of phosphorus on growth and yield of green gram (Vigna radiata L. Wilczek). Legume Res Int J 28:59–61

    Google Scholar 

  99. Srivastava S, D’Souza SE, Sen U, States JC (2007) In utero arsenic exposure induces early onset of atherosclerosis in ApoE−/− mice. Reprod Toxicol 23:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chavan P, Shinde V, Kote G, Solunke P, Bhondve A (2008) Response of sources and levels of phosphorus with and without PSB inoculation on growth, yield and quality of soybean. Res Crops 9:286–289

    Google Scholar 

  101. Raskar B (1999) Effect of source and level of phosphorus on the yield of sorghum (Sorghum bicolor) under dryland conditions. Indian J Agron 44:760–764

    Google Scholar 

  102. Kidd P, Mench M, Alvarez-Lopez V, Bert V, Dimitriou I, Friesl-Hanl W, Herzig R, Janssen JO, Kolbas A, Mueller I, Neu S, Renella G, Ruttens A, Vangronsveld J, Puschenreiter M (2015) Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int J Phytoremediation 17:1005–1037. doi:10.1080/15226514.2014.1003788

    Article  CAS  PubMed  Google Scholar 

  103. Wan C, Wang Y, Wang N, Norimatsu W, Kusunoki M, Koumoto K (2016) Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci Technol Adv Mater 11(4):044306

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Grand Challenges Canada–Stars in Global Health (GCC Grant No. S5 0433-01) and International Foundation for Science (IFS Grant No. W/5698-1) for providing financial support, and the University of Agriculture Faisalabad, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Khan Niazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niazi, N.K. et al. (2016). Phytoremediation of Arsenic-Contaminated Soils Using Arsenic Hyperaccumulating Ferns. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_19

Download citation

Publish with us

Policies and ethics