Skip to main content

PET Image Reconstruction: Methodology and Quantitative Accuracy

  • Chapter
  • First Online:
Basic Science of PET Imaging

Abstract

This chapter reviews the techniques developed for positron emission tomography (PET) image reconstruction and image property analysis. Both mathematical theory and practical considerations are introduced. We focus on the commonly used methods on commercial PET scanners, in particular model-based statistical reconstruction methods. We also briefly describe data corrections necessary for PET image reconstruction, which are important for reducing artifacts and improving quantitative accuracy. Finally some recent developments are described, including the reconstruction of time-of-flight (TOF) PET data and direct parametric image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radon J. On determination of functions by their integral values along certain multiplicities. Ber Sachische Akad Wiss LeipzigGermany. 1917;69:262–77.

    Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography): part 1. Description of system. Br J Radiol. 1973;46(552):1016–22.

    Article  CAS  PubMed  Google Scholar 

  3. Natterer F. Computerized tomography. In: The mathematics of computerized tomography. New York: John Wiley and Sons Inc; 1986. p. 1–8.

    Google Scholar 

  4. Shepp LA, Logan B. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci. 1974;21:21–33.

    Article  Google Scholar 

  5. Farquhar TH, Chatziioannou A, Chinn G, Dahlbom M, Hoffman EJ. An investigation of filter choice for filtered back-projection reconstruction in PET. Presented at the Nuclear Science Symposium and Medical Imaging Conference, vol. 2; 1997. p. 1042–6.

    Google Scholar 

  6. Tsui B, Frey E. Analytic image reconstruction methods in emission computed tomography. In: Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 82–106.

    Google Scholar 

  7. Colsher JG. Fully three-dimensional positron emission tomography. Phys Med Biol. 1980;25(1):103–15.

    Article  CAS  PubMed  Google Scholar 

  8. Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nucl Sci. 1989;36(1):964–8.

    Article  CAS  Google Scholar 

  9. Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med. 1987;28(11):1717–24.

    CAS  PubMed  Google Scholar 

  10. Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport DF. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging. 1997;16(2):145–58.

    Article  CAS  PubMed  Google Scholar 

  11. Fessler JA. Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE Trans Med Imaging. 1994;13(2):290–300.

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman EJ, Huang S-C, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr. 1981;5(3):391–400.

    Article  CAS  PubMed  Google Scholar 

  13. Yavuz M, Fessler JA. Statistical image reconstruction methods for randoms-precorrected PET scans. Med Image Anal. 1998;2(4):369–78.

    Article  CAS  PubMed  Google Scholar 

  14. Comtat C, Kinahan PE, Defrise M, Michel C, Townsend DW. Fast reconstruction of 3D PET data with accurate statistical modeling. IEEE Trans Nucl Sci. 1998;45(3):1083–9.

    Article  Google Scholar 

  15. Liu X, Comtat C, Michel C, Kinahan P, Defrise M, Townsend D. Comparison of 3-D reconstruction with 3D-OSEM and with FORE + OSEM for PET. IEEE Trans Med Imaging. 2001;20(8):804–14.

    Article  CAS  PubMed  Google Scholar 

  16. Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998;43(4):1001–13.

    Article  CAS  PubMed  Google Scholar 

  17. Bai B, Ruangma A, Laforest R, Tai YC, Leahy RM. Positron range modeling for statistical PET image reconstruction. Presented at the Nuclear Science Symposium and Medical Imaging Conference Record, vol. 4; 2003. p. 2501–5.

    Google Scholar 

  18. Fu L, Qi J. A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range. Med Phys. 2010;37:704.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hong I, Chung S, Kim H, Kim Y, Son Y, Cho Z. Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction. IEEE Trans Med Imaging. 2007;26(6):789–803.

    Article  CAS  PubMed  Google Scholar 

  20. Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imaging. 2009;28(3):435–45.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huesman RH, Klein GJ, Moses WW, Qi J, Reutter BW, Virador PR. List-mode maximum-likelihood reconstruction applied to positron emission mammography (PEM) with irregular sampling. IEEE Trans Med Imaging. 2000;19(5):532–7.

    Article  CAS  PubMed  Google Scholar 

  22. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  PubMed  Google Scholar 

  23. Tohme MS, Qi J. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements. Phys Med Biol. 2009;54(12):3709.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bai B, Lin Y, Zhu W, Ren R, Li Q, Dahlbom M, DiFilippo F, Leahy RM. MAP reconstruction for Fourier rebinned TOF-PET data. Phys Med Biol. 2014;59(4):925.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rahmim A, Qi J, Sossi V. Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls. Med Phys. 2013;40:064301.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bai B, Esser PD. The effect of edge artifacts on quantification of Positron Emission Tomography. Presented at the Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC); 2010. p. 2263–6.

    Google Scholar 

  27. Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. IEEE Trans Nucl Sci. 2011;58(5):2264–75.

    Article  Google Scholar 

  28. Watson CC. Estimating effective model kernel widths for PSF reconstruction in PET. Presented at the Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); 2011. p. 2368–74.

    Google Scholar 

  29. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39:1–38.

    Google Scholar 

  30. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  31. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr. 1984;8(2):306–16.

    CAS  PubMed  Google Scholar 

  32. De Pierro AR. On the relation between the ISRA and the EM algorithm for positron emission tomography. IEEE Trans Med Imaging. 1993;12(2):328–33.

    Article  PubMed  Google Scholar 

  33. Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):R541–78.

    Article  PubMed  Google Scholar 

  34. Lange K, Fessler JA. Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans Image Process. 1995;4(10):1430–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hunter DR, Lange K. A tutorial on MM algorithms. Am Stat. 2004;58(1):30–7.

    Article  Google Scholar 

  36. Jacobson MW, Fessler JA. An expanded theoretical treatment of iteration-dependent majorize-minimize algorithms. IEEE Trans Image Process. 2007;16(10):2411–22.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc. 1985;80(389):8–20.

    Article  Google Scholar 

  38. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13(4):601–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ahn S, Fessler JA. Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans Med Imaging. 2003;22(5):613–26.

    Article  PubMed  Google Scholar 

  40. Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Process. 1998;7(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Ahn S, Leahy R. Fast hybrid algorithms for PET image reconstruction. Presented at the Nuclear Science Symposium and Medical Imaging Conference Record, vol. 4; 2005. p. 1851–5.

    Google Scholar 

  42. Browne J, De Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15(5):687–99.

    Article  CAS  PubMed  Google Scholar 

  43. Hsiao IT, Huang HM. An accelerated ordered subsets reconstruction algorithm using an accelerating power factor for emission tomography. Phys Med Biol. 2010;55(3):599–614.

    Article  PubMed  Google Scholar 

  44. Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6(3):228–38.

    Article  CAS  PubMed  Google Scholar 

  45. Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing. IEEE Trans Med Imaging. 1987;6(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  46. Llacer J, Veklerov E, Coakley KJ, Hoffman EJ, Nunez J. Statistical analysis of maximum likelihood estimator images of human brain FDG PET studies. IEEE Trans Med Imaging. 1993;12(2):215–31.

    Article  CAS  PubMed  Google Scholar 

  47. Lange K, Bahn M, Little R. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. IEEE Trans Med Imaging. 1987;6(2):106–14.

    Article  CAS  PubMed  Google Scholar 

  48. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med. 1997;24(3):258–65.

    CAS  PubMed  Google Scholar 

  49. Hsiao T, Rangarajan A, Gindi G. A new convex edge-preserving median prior with applications to tomography. IEEE Trans Med Imaging. 2003;22(5):580–5.

    Article  PubMed  Google Scholar 

  50. Besag J. Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol. 1974;36:192–236.

    Google Scholar 

  51. Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 1984;6(6):721–41.

    Article  CAS  PubMed  Google Scholar 

  52. Bouman CA, Sauer K. A unified approach to statistical tomography using coordinate descent optimization. IEEE Trans Image Process. 1996;5(3):480–92.

    Article  CAS  PubMed  Google Scholar 

  53. Sidky EY, Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008;53(17):4777.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Panin VY, Zeng GL, Gullberg GT. Total variation regulated EM algorithm [SPECT reconstruction]. IEEE Trans Nucl Sci. 1999;46(6):2202–10.

    Article  Google Scholar 

  55. Bai B. An interior-point method for total variation regularized positron emission tomography image reconstruction; 2012. p. 83136B1–83136B6.

    Google Scholar 

  56. Wang G, Qi J. Edge-preserving PET image reconstruction using trust optimization transfer, Presented at the 12th International Meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine; 2013. p. 70–3.

    Google Scholar 

  57. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  Google Scholar 

  58. Geman S, McClure D. Bayesian image analysis: an application to single photon emission tomography. Presented at the American Statistical Association; 1985. p. 12–8.

    Google Scholar 

  59. Ahn S, Ross SG, Asma E, Miao J, Jin X, Cheng L, Wollenweber SD, Manjeshwar RM. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. Phys Med Biol. 2015;60(15):5733.

    Article  PubMed  Google Scholar 

  60. Nuyts J, Bequé D, Dupont P, Mortelmans L. A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. IEEE Trans Nucl Sci. 2002;49(1):56–60.

    Article  Google Scholar 

  61. Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Presented at the Seminars in Nuclear Medicine, vol. 43;2013. p. 30–44.

    Google Scholar 

  62. Nuyts J. The use of mutual information and joint entropy for anatomical priors in emission tomography. Presented at the Nuclear Science Symposium Conference Record, 2007. NSS ’07. IEEE, vol. 6; 2007. p. 4149–54.

    Google Scholar 

  63. Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging. 1989;8(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  64. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging. 1990;9(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  65. De Pierro AR. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography. IEEE Trans Med Imaging. 1995;14(1):132–7.

    Article  PubMed  Google Scholar 

  66. √ú Mumcuoglu E, Leahy RM, Cherry SR. Bayesian reconstruction of PET images: methodology and performance analysis. Phys Med Biol. 1996;41(9):1777.

    Article  PubMed  Google Scholar 

  67. Mumcuoglu EU, Leahy R, Cherry SR, Zhou Z. Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans Med Imaging. 1994;13(4):687–701.

    Article  CAS  PubMed  Google Scholar 

  68. Johnson CA, Seidel J, Sofer A. Interior-point methodology for 3-D PET reconstruction. IEEE Trans Med Imaging. 2000;19(4):271–85.

    Article  CAS  PubMed  Google Scholar 

  69. Fessler JA, Booth SD. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction. IEEE Trans Image Process. 1999;8(5):688–99.

    Article  CAS  PubMed  Google Scholar 

  70. Chinn G, Huang S-C. A general class of preconditioners for statistical iterative reconstruction of emission computed tomography. IEEE Trans Med Imaging. 1997;16(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  71. Kaufman L. Implementing and accelerating the EM algorithm for positron emission tomography. IEEE Trans Med Imaging. 1987;6(1):37–51.

    Article  CAS  PubMed  Google Scholar 

  72. Kaufman L. Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans Med Imaging. 1993;12(2):200–14.

    Article  CAS  PubMed  Google Scholar 

  73. Stayman JW, Fessler JA. Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction. IEEE Trans Med Imaging. 2000;19(6):601–15.

    Article  CAS  PubMed  Google Scholar 

  74. Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R, Cherry SR. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imaging. 2000;19(5):507–12.

    Article  CAS  PubMed  Google Scholar 

  75. Wilson DW, Tsui BMW. Spacial resolution properties of FB and ML-EM reconstruction methods. Presented at the Nuclear Science Symposium and Medical Imaging Conference; 1993. p. 1189–93.

    Google Scholar 

  76. Fessler JA, Rogers WL. Spatial resolution properties of penalized-likelihood image reconstruction: space-invariant tomographs. IEEE Trans Image Process. 1996;5(9):1346–58.

    Article  CAS  PubMed  Google Scholar 

  77. Qi J, Leahy RM. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging. 2000;19(5):493–506.

    Article  CAS  PubMed  Google Scholar 

  78. Fessler JA. Analytical approach to regularization design for isotropic spatial resolution. Presented at the Nuclear Science Symposium Conference Record, 2003 IEEE, vol. 3; 2003. p. 2022–6.

    Google Scholar 

  79. Vunckx K, Zhou L, Matej S, Defrise M, Nuyts J. Fisher information-based evaluation of image quality for time-of-flight PET. IEEE Trans Med Imaging. 2010;29(2):311–21.

    Article  PubMed  Google Scholar 

  80. Stayman JW, Fessler JA. Compensation for nonuniform resolution using penalized-likelihood reconstruction in space-variant imaging systems. IEEE Trans Med Imaging. 2004;23(3):269–84.

    Article  PubMed  Google Scholar 

  81. Li Q, Bai B, Cho S, Smith A, Leahy R. Count independent resolution and its calibration. Presented at the 10th International Meeting on fully three-dimensional image reconstruction in radiology and nuclear medicine; 2009. p. 223–6.

    Google Scholar 

  82. Barrett HH, Wilson DW, Tsui BM. Noise properties of the EM algorithm: I. Theory. Phys Med Biol. 1994;39(5):833–46.

    Article  CAS  PubMed  Google Scholar 

  83. Fessler JA. Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography. IEEE Trans Image Process. 1996;5(3):493–506.

    Article  CAS  PubMed  Google Scholar 

  84. Badawi R, Marsden P. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44(2):571.

    Article  CAS  PubMed  Google Scholar 

  85. Bai B, Li Q, Holdsworth CH, Asma E, Tai YC, Chatziioannou A, Leahy RM. Model-based normalization for iterative 3D PET image reconstruction. Phys Med Biol. 2002;47(15):2773–84.

    Article  CAS  PubMed  Google Scholar 

  86. Defrise M, Townsend DW, Bailey D, Geissbuhler A, Michel C, Jones T. A normalization technique for 3D PET data. Phys Med Biol. 1991;36(7):939–52.

    Article  CAS  PubMed  Google Scholar 

  87. Cherry SR, Phelps ME. Imaging brain function with positron emission tomography. In: Brain Mapping Methods. New York: Academic; 1996. p. 191–221.

    Google Scholar 

  88. Riederer SJ. Application of the noise power spectrum to positron emission CT self‐absorption correction. Med Phys. 1981;8(2):220–4.

    Article  CAS  PubMed  Google Scholar 

  89. Carney J, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys. 2006;33(4):976–83.

    Article  PubMed  Google Scholar 

  90. Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36(1):93–104.

    Article  Google Scholar 

  91. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Philadelphia: Elsevier Health Sciences; 2012.

    Google Scholar 

  92. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Three-dimensional image reconstruction in radiology and nuclear medicine. Boston: Kluwer Academic Publishers; 1996. p. 255–68.

    Google Scholar 

  93. Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol. 1996;41(1):153.

    Article  CAS  PubMed  Google Scholar 

  94. Watson CC. New, faster, image-based scatter correction for 3D PET. IEEE Trans Nucl Sci. 2000;47(4):1587–94.

    Article  Google Scholar 

  95. Holdsworth H, Levin C, Janecek M, Dahlbom M, Hoffman E. Performance analysis of an improved 3-D PET Monte Carlo simulation and scatter correction. IEEE Trans Nucl Sci. 2002;49(1):83–9.

    Article  Google Scholar 

  96. Watson CC. An evaluation of image noise variance for time-of-flight PET. IEEE Trans Nucl Sci. 2007;54(5):1639–47.

    Article  Google Scholar 

  97. Ahn S, Cho S, Li Q, Lin Y, Leahy RM. Optimal rebinning of time-of-flight PET data. IEEE Trans Med Imaging. 2011;30(10):1808–18.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28(6):4581–9.

    Article  Google Scholar 

  99. Cho S, Ahn S, Li Q, Leahy RM. Analytical properties of time-of-flight PET data. Phys Med Biol. 2008;53(11):2809–21.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cho S, Ahn S, Li Q, Leahy RM. Exact and approximate Fourier rebinning of PET data from time-of-flight to non time-of-flight. Phys Med Biol. 2009;54(3):467–84.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Carson RE. Tracer kinetic modeling in PET. In: Positron emission tomography. London: Springer; 2005. p. 127–59.

    Google Scholar 

  102. Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. Med. Imaging IEEE Trans. 2005:636–50.

    Google Scholar 

  103. Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys. Med. Biol. 2013;58:7391.

    Google Scholar 

  104. Zhu W, Bai B, Conti PS, Li Q, Leahy RM. Data correction methods for wholebody Patlak imaging from list-mode PET data. Presented at the 12th International Meeting on fully 3D image reconstruction in radiology and nuclear medicine, Lake Tahoe; 2013. p. 213–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Bai PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bai, B., Asma, E. (2017). PET Image Reconstruction: Methodology and Quantitative Accuracy. In: Khalil, M. (eds) Basic Science of PET Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-40070-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40070-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40068-6

  • Online ISBN: 978-3-319-40070-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics