Skip to main content

Low-Dose Therapy for the Treatment of Low-Grade Chronic Inflammation

  • Chapter
  • First Online:
Integrative Cardiology

Abstract

From a macroscopic point of view, the inflammatory process is considered an event for which it is possible to identify a beginning and an endpoint, typically represented by the appearance and subsequent disappearance of the classical signs and symptoms (rubor, tumor, calor, dolor, fluor and functio laesa), respectively [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freire MO, Van Dyke TE (2013) Natural resolution of inflammation. Periodontology 2000 63(1):149–164

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alessandri AL, Sousa LP, Lucas CD, Rossi AG, Pinho V et al (2013) Resolution of inflammation: mechanisms and opportunity for drug development. Pharmacol Ther 139(2):189–212

    Article  CAS  PubMed  Google Scholar 

  3. Madhumitha H, Mohan V, Deepa M, Babu S, Aravindhan V (2014) Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovasc Diabetol 13:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Eljaafari A, Robert M, Chehimi M, Chanon S, Durand C et al (2015) Adipose tissue-derived stem cells from obese subjects contribute to inflammation and reduced insulin response in adipocytes through differential regulation of the Th1/Th17 balance and monocyte activation. Diabetes 64(7):2477–2488

    Article  CAS  PubMed  Google Scholar 

  5. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69 [Suppl 1]:S4–S9

    Article  PubMed  Google Scholar 

  6. Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S et al (2014) Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur J Immunol 44(5):1552–1562

    Article  CAS  PubMed  Google Scholar 

  7. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    Article  CAS  PubMed  Google Scholar 

  8. Barbaresko J, Koch M, Schulze MB, Nöthlings U (2013) Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev 71(8):511–527

    Article  PubMed  Google Scholar 

  9. Hueston CM, Deak T (2014) The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiol Behav 124:77–91

    Article  CAS  PubMed  Google Scholar 

  10. Lee H, Lee IS, Choue R (2013) Obesity, inflammation and diet. Pediatr Gastroenterol Hepatol Nutr 16(3):143–152

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carman JA, Vlieger HR, Ver Steeg LJ et al (2013) A long-term toxicology study on pigs fed a combined genetically modified (GM) soy and GM maize diet. J Org Syst 8(1):38–54

    Google Scholar 

  12. Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15(4):1416–1463

    Article  CAS  Google Scholar 

  13. Adler UC (2011) Low-grade inflammation in chronic diseases: an integrative pathophysiology anticipated by homeopathy? Med Hypotheses 76(5):622–626

    Article  CAS  PubMed  Google Scholar 

  14. Lee BJ, Bak YT (2011) Irritable bowel syndrome, gut microbiota and probiotics. J Neurogastroenterol Motil 17(3):252–266

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henson J, Yates T, Edwardson CL, Khunti K, Talbot D et al (2013) Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS One 8(10):e78350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M et al (2014) Gut microbiota and metabolic syndrome. World J Gastroenterol 20(43):16079–16094

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fujimura KE, Slusher NA, Cabana MD, Lynch SV (2010) Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 8(4):435–454

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bauer PV, Hamr SC, Duca FA (2016) Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell Mol Life Sci 73(4):737–755

    Article  CAS  PubMed  Google Scholar 

  19. Bercik P, Collins SM (2014) The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. Adv Exp Med Biol 817:279–289

    Article  CAS  PubMed  Google Scholar 

  20. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136(6):2003–2014

    Article  PubMed  Google Scholar 

  21. Forsythe P, Kunze WA, Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28(6):557–562

    Article  PubMed  Google Scholar 

  22. Kovatcheva-Datchary P, Arora T (2013) Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol 27(1):59–72

    Article  CAS  PubMed  Google Scholar 

  23. Olivares M, Laparra JM, Sanz Y (2013) Host genotype, intestinal microbiota and inflammatory disorders. Br J Nutr 109 [Suppl 2]:S76–S80

    Article  CAS  PubMed  Google Scholar 

  24. Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM et al (2013) Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol 108(7):1066–1074

    Article  CAS  PubMed  Google Scholar 

  25. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G et al (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392

    PubMed  PubMed Central  Google Scholar 

  26. De Punder K, Pruimboom L (2015) Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability. Front Immunol 6:223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pietrzyk L, Torres A, Maciejewski R, Torres K (2015) Obesity and obese-related chronic low-grade inflammation in promotion of colorectal cancer development. Asian Pac J Cancer Prev 16(10):4161–4168

    Article  PubMed  Google Scholar 

  28. Esser N, Paquot N, Scheen AJ (2015) Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 24(3):283–307

    Article  CAS  PubMed  Google Scholar 

  29. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bleau C, Karelis AD, St-Pierre DH, Lamontagne L (2015) Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 31(6):545–561

    Article  CAS  PubMed  Google Scholar 

  31. Jin C, Flavell RA (2013) Innate sensors of pathogen and stress: linking inflammation to obesity. J Allergy Clin Immunol 132(2):287–294

    Article  CAS  PubMed  Google Scholar 

  32. Berger S, Raman G, Vishwanathan R, Jacques PF, Johnson EJ (2015) Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 102(2):276–294

    Article  CAS  PubMed  Google Scholar 

  33. Stojanović S, Ilić MD, Ilić S, Petrović D, Djukić S (2015) The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease. Vojnosanit Pregl 72(9):779–784

    Article  PubMed  Google Scholar 

  34. Turker Y, Baltaci D, Turker Y, Ozturk S, Sonmez CI et al (2015) Investigation of relationship of visceral body fat and inflammatory markers with metabolic syndrome and its components among apparently healthy individuals. Int J Clin Exp Med 8(8):13067–13077

    PubMed  PubMed Central  Google Scholar 

  35. Larsen SB, Grove EL, Würtz M, Neergaard-Petersen S, Hvas AM et al (2015) The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb Haemost 114(3):519–529

    Article  PubMed  Google Scholar 

  36. Guarner V, Rubio-Ruiz ME (2015) Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol 40:99–106

    Article  PubMed  Google Scholar 

  37. Corrado E, Rizzo M, Coppola G, Fattouch K, Novo G et al (2010) An update on the role of markers of inflammation in atherosclerosis. J Atheroscler Thromb 17(1):1–11

    Article  CAS  PubMed  Google Scholar 

  38. Bustamante A, Sobrino T, Giralt D, García-Berrocoso T, Llombart V et al (2014) Prognostic value of blood interleukin-6 in the prediction of functional outcome after stroke: a systematic review and meta-analysis. J Neuroimmunol 274(1-2):215–224

    Article  CAS  PubMed  Google Scholar 

  39. Kaptoge S, Seshasai SR, Gao P, Freitag DF, Butterworth AS et al (2014) Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 35(9):578–589

    Article  CAS  PubMed  Google Scholar 

  40. Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25(6):469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spinas E, Kritas SK, Saggini A, Mobili A, Caraffa A et al (2014) Role of mast cells in atherosclerosis: a classical inflammatory disease. Int J Immunopathol Pharmacol 27(4):517–521

    Article  CAS  PubMed  Google Scholar 

  42. Wollert KC, Drexler H (2001) The role of interleukin-6 in the failing heart. Heart Fail Rev 6(2):95–103

    Article  CAS  PubMed  Google Scholar 

  43. Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB et al (2004) Association of visceral adipose tissue with incident myocardial infarction in older men and women: the Health, Aging and Body Composition Study. Am J Epidemiol 160(8):741–749

    Article  PubMed  Google Scholar 

  44. Dessein PH, Solomon A, Woodiwiss AJ, Norton GR, Tsang L et al (2013) Marked independent relationship between circulating interleukin-6 concentrations and endothelial activation in rheumatoid arthritis. Mediators Inflamm 2013:510243

    PubMed  PubMed Central  Google Scholar 

  45. Nishida H, Horio T, Suzuki Y, Iwashima Y, Tokudome T et al (2011) Interleukin-6 as an independent predictor of future cardiovascular events in high-risk Japanese patients: comparison with C-reactive protein. Cytokine 53(3):342–346

    Article  CAS  PubMed  Google Scholar 

  46. Su D, Li Z, Li X, Chen Y, Zhang Y et al (2013) Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm 2013:726178

    PubMed  PubMed Central  Google Scholar 

  47. Kon V, Yang H, Fazio S (2015) Residual cardiovascular risk in chronic kidney disease: role of high-density lipoprotein. Arch Med Res 46(5):379–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang AY, Lam CW, Chan IH, Wang M, Lui SF et al (2010) Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension 56(2):210–216

    Article  CAS  PubMed  Google Scholar 

  49. Elewa U, Sanchez-Niño MD, Martin-Cleary C, Fernandez-Fernandez B, Egido J et al (2012) Cardiovascular risk biomarkers in CKD: the inflammation link and the road less traveled. Int Urol Nephrol 44(6):1731–1744

    Article  CAS  PubMed  Google Scholar 

  50. Dai X, Wang B (2015) Role of gut barrier function in the pathogenesis of nonalcoholic Fatty liver disease. Gastroenterol Res Pract 2015:287348

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vajro P, Paolella G, Fasano A (2013) Microbiota and gut-liver axis: their influences on obesity and obesity-related liver disease. J Pediatr Gastroenterol Nutr 56(5):461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Compare D, Coccoli P, Rocco A, Nardone OM, De Maria S et al (2012) Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 22(6):471–476

    Article  CAS  PubMed  Google Scholar 

  53. Minemura M, Shimizu Y (2015) Gut microbiota and liver diseases. World J Gastroenterol 21(6):1691–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saito T, Mochizuki T, Uchida K, Tsuchiya K, Nitta K (2013) Metabolic syndrome and risk of progression of chronic kidney disease: a single-center cohort study in Japan. Heart Vessels 28(3):323–329

    Article  PubMed  Google Scholar 

  55. Ferolla SM, Silva LC, de Lourdes Abreu Ferrari M, da Cunha AS, dos Santos Martins F et al (2015) Dietary approach in the treatment of nonalcoholic fatty liver disease. World J Hepatol 7(24):2522–2534

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lim S, Oh TJ, Koh KK (2015) Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. Int J Cardiol 201:408–414

    Article  PubMed  Google Scholar 

  57. Lonardo A, Sookoian S, Pirola CJ, Targher G (2015) Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism 65(8):1136–1150

    Google Scholar 

  58. Than NN, Newsome PN (2015) A concise review of non-alcoholic fatty liver disease. Atherosclerosis 239(1):192–202

    Article  CAS  PubMed  Google Scholar 

  59. Giannelli V, Di Gregorio V, Iebba V, Giusto M, Schippa S et al (2014) Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 20(45):16795–16810

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barrios C, Beaumont M, Pallister T, Villar J, Goodrich JK et al (2015) Gut-microbiota-metabolite axis in early renal function decline. PLoS One 10(8):e0134311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brady NR, Hamacher-Brady A, Westerhoff HV, Gottlieb RA (2006) A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid Redox Signal 8(9–10):1651–1665

    Article  CAS  PubMed  Google Scholar 

  63. Gusdon AM, Fernandez-Bueno GA, Wohlgemuth S, Fernandez J, Chen J et al (2015) Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. BMC Biochem 16:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. El Assar M, Angulo J, Rodríguez-Mañas L (2013) Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 65:380–401

    Article  PubMed  CAS  Google Scholar 

  65. Ballinger SW (2005) Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38(10):1278–1295

    Article  CAS  PubMed  Google Scholar 

  66. Mikhed Y, Daiber A, Steven S (2015) Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 16(7):15918–15953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yao X, Carlson D, Sun Y, Ma L, Wolf SE et al (2015) Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLoS One 10(10):e0139416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ (2015) Redox homeostasis and mitochondrial dynamics. Cell Metab 22(2):207–218

    Article  CAS  PubMed  Google Scholar 

  69. Singh S, Zhuo M, Gorgun FM, Englander EW (2013) Overexpressed neuroglobin raises threshold for nitric oxide-induced impairment of mitochondrial respiratory activities and stress signaling in primary cortical neurons. Nitric Oxide 32:21–28

    Article  CAS  PubMed  Google Scholar 

  70. Bogeski I, Niemeyer BA (2014) Redox regulation of ion channels. Antioxid Redox Signal 21(6):859–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tocchi A, Quarles EK, Basisty N, Gitari L, Rabinovitch PS (2015) Mitochondrial dysfunction in cardiac aging. Biochim Biophys Acta 1847(11):1424–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Herrera A, Garcia I, Gaytan N, Jones E, Maldonado A et al (2015) Endangered species: mitochondrial DNA loss as a mechanism of human disease. Front Biosci (Schol Ed) 7:109–124

    Article  Google Scholar 

  73. Sobenin IA, Zhelankin AV, Mitrofanov KY, Sinyov VV, Sazonova MA et al (2015) Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases. Curr Pharm Des 21(9):1158–1163

    Article  CAS  PubMed  Google Scholar 

  74. Koene S, Smeitink J (2011) Mitochondrial medicine. J Inherit Metab Dis 34(2):247–248

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Harrison CM, Pompilius M, Pinkerton KE, Ballinger SW (2011) Mitochondrial oxidative stress significantly influences atherogenic risk and cytokine-induced oxidant production. Environ Health Perspect 119(5):676–681

    Article  CAS  PubMed  Google Scholar 

  77. Yang YK, Wang LP, Chen L, Yao XP, Yang KQ et al (2015) Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin Chim Acta 450:83–89

    Article  CAS  PubMed  Google Scholar 

  78. Forsberg E, Xu C, Grünler J, Frostegård J, Tekle M et al (2015) Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J Diabetes Complications 29(8):1152–1158

    Article  PubMed  Google Scholar 

  79. Linnane AW, Kios M, Vitetta L (2007) Coenzyme Q(10) – its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome. Mitochondrion 7(Suppl):S51–S61

    Article  CAS  PubMed  Google Scholar 

  80. Smith BJ, Lightfoot SA, Lerner MR, Denson KD, Morgan DL et al (2009) Induction of cardiovascular pathology in a novel model of low-grade chronic inflammation. Cardiovasc Pathol 18(1):1–10

    Article  CAS  PubMed  Google Scholar 

  81. Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 65(10):1028–1041

    Article  PubMed  Google Scholar 

  82. Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20(7):709–711

    Article  CAS  PubMed  Google Scholar 

  83. Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 12(2):288–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev 2013:956792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Tikhaze AK, Konovalova GG, Lankin VZ, Kaminnyi AI, Kaminnaja VI et al (2005) Effect of ubiquinone Q(10) and antioxidant vitamins on free radical oxidation of phospholipids in biological membranes of rat liver. Bull Exp Biol Med 140(2):181–183

    Article  CAS  PubMed  Google Scholar 

  86. Ghosh R, Alajbegovic A, Gomes AV (2015) NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxid Med Cell Longev 2015:536962

    Article  PubMed  PubMed Central  Google Scholar 

  87. Taubert KA (2008) Cardiology patient pages. Can patients with cardiovascular disease take nonsteroidal antiinflammatory drugs? Circulation 117(17):e322–e324

    Article  CAS  PubMed  Google Scholar 

  88. Habib I, Mazulis A, Roginsky G, Ehrenpreis ED (2014) Nonsteroidal anti-inflammatory drugs and inflammatory bowel disease: pathophysiology and clinical associations. Inflamm Bowel Dis 20(12):2493–2502

    Article  PubMed  Google Scholar 

  89. Lotti T, Perra A (2014) Bases and principles of low dose medicine and P.N.E.I. foundations of low dose pharmacology. Pigm Disord 1:e101

    Google Scholar 

  90. Fioranelli M, Roccia MG (2014) Twenty-five years of studies and trials for the therapeutic application of IL-10 immunomodulating properties. From high doses administration to low dose medicine new paradigm. J Integr Cardiol 1(1):2–6

    Google Scholar 

  91. Gariboldi S, Palazzo M, Zanobbio L, Dusio GF, Mauro V et al (2009) Low dose oral administration of cytokines for treatment of allergic asthma. Pulm Pharmacol Ther 22:497–510

    Article  CAS  PubMed  Google Scholar 

  92. D’Amico L, Ruffini E, Ferracini R, Roato I (2012) Low dose of IL-12 stimulates T cell response in cultures of PBMCs derived from non-small cell lung cancer patients. J Cancer Ther 3:337–342

    Article  CAS  Google Scholar 

  93. Cardani D, Dusio GF, Luchini P, Sciarabba M, Solimene U et al (2013) Oral administration of interleukin-10 and anti-IL-1 antibody ameliorates experimental intestinal inflammation. Gastroenterol Res 6:124–133

    CAS  Google Scholar 

  94. Radice E, Miranda V, Bellone G (2014) Low-doses of sequential-kinetic-activated interferon-gamma enhance the ex vivo cytotoxicity of peripheral blood natural killer cells from patients with early-stage colorectal cancer. A preliminary study. Int Immunopharmacol 19:66–73

    Article  CAS  PubMed  Google Scholar 

  95. Roberti ML, Ricottini L, Capponi A, Sclauzero E, Vicenti P et al (2014) Immunomodulating treatment with low dose Interleukin-4, Interleukin-10 and Interleukin-11 in psoriasis vulgaris. J Biol Regul Homeost Agents 28:133–139

    CAS  PubMed  Google Scholar 

  96. Luchetti P (2014) Increasing of visual function in patients with retinal atrophy treated with drugs of Low Dose Medicine. Monocentric retrospective observational study. Minerva Oftalmol 56(3-4):53–61

    Google Scholar 

  97. Barygina V, Becatti M, Lotti T, Moretti S, Taddei N et al (2015) Treatment with low-dose cytokines reduces oxidative-mediated injury in perilesional keratinocytes from vitiligo skin. J Dermatol Sci 79(2):163–170

    Article  CAS  PubMed  Google Scholar 

  98. Lotti T, Hercogova J, Wollina U, Chokoeva AA, Zarrab Z et al (2015) Vitiligo: successful combination treatment based on oral low dose cytokines and different topical treatments. J Biol Regul Homeost Agents 29 [1 Suppl]:53–58

    CAS  PubMed  Google Scholar 

  99. Radice E, Bellone G, Miranda V (2015) Enhancement of the immunostimulatory functions of ex vivo-generated dendritic cells from early-stage colon cancer patients by consecutive exposure to low doses of sequential-kinetic-activated IL-4 and IL-12. A preliminary study. Transl Oncol 8(4):327–338

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lotti T (2015) Successful combination treatment for psoriasis with phototherapy and low-dose cytokines: a spontaneous, retrospective observational clinical study. Hautarzt 66(11):849–854

    Article  CAS  PubMed  Google Scholar 

  101. Tessaro I, Modina SC, Franciosi F, Sivelli G, Terzaghi L, Lodde V et al (2015) Effect of oral administration of low-dose follicle stimulating hormone on hyperandrogenized mice as a model of polycystic ovary syndrome. J Ovarian Res 8(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Porozov S, Cahlon L, Weiser M, Branski D, Lider O et al (2004) Inhibition of IL-lβ and TNF-α secretion from resting and activated human immunocytes by the homeopathic medication Traumeel®S. Clin Dev Immunol 11(2):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. González de Vega C, Speed C, Wolfarth B, González J (2013) Traumeel vs. diclofenac for reducing pain and improving ankle mobility after acute ankle sprain: a multicentre, randomised, blinded, controlled and non-inferiority trial. Int J Clin Pract 67(10):979–989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Fioranelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fioranelli, M., Del Prete, M., Aracena, J.C., Roccia, M.G., Dal Lin, C., Tomella, C. (2017). Low-Dose Therapy for the Treatment of Low-Grade Chronic Inflammation. In: Fioranelli, M. (eds) Integrative Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-40010-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40010-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40008-2

  • Online ISBN: 978-3-319-40010-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics