Skip to main content

Should I Stay or Should I Go? Fission–Fusion Dynamics in Bats

  • Chapter
  • First Online:
Sociality in Bats

Abstract

Animal species with fission–fusion dynamics are characterized by variable group size and composition, as individuals move freely among a social network. Patterns consistent with fission–fusion dynamics appear to be widespread in bats and interest in these patterns has advanced our general understanding of proximate and ultimate explanations for fission–fusion dynamics. Here, we explore the following questions: (1) Why do bats switch roosts? (2) Why do not group members move together? (3) Do bats form social bonds despite frequent roost switching? (4) If group members do form social relationships, what shapes these relationships? (5) How are social relationships maintained in these dynamic systems? (6) What does our understanding about fission–fusion in bats tell us about the evolution of fission–fusion dynamics in general? In our review, we show that bats switch roosts for a combination of reasons, including to reduce predation, parasites, and disease, and to minimize commutes. The strongest evidence, however, suggests bats switch roosts to seek more suitable roosts when roost quality changes. However, the degree to which each of these factors influences roost switching varies between individuals, across species, and depends on preferred roost type and roost availability. Group members may not move together because they experience different perceived costs and benefits of remaining in a group. Bats apparently use a combination of spatial and sensory information to relocate group members and maintain social bonds. Bat populations with fission–fusion dynamics likely benefit from social thermoregulation, and share information about roosts and foraging sites. Although our understanding of these dynamics has improved in recent years, many questions remain. For instance, a better understanding of the proximate factors driving fission–fusion dynamics is required. Establishing the levels at which bats sharing the same roost interact, together with network analyses, would also advance our understanding of relationships within these dynamic groups. Together, answers to these and other questions will help us to better manage bat populations and their habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altringham JD, Senior P (2006) Social systems and ecology of bats. In: Ruckstuhl KE, Neuhaus P (eds) Sexual segregation in vertebrates: ecology of the two sexes. Cambridge University Press, Cambridge, xii + 488 pp, pp 280–302

    Google Scholar 

  • Altringham JD (1996) Bats: biology and behaviour. Oxford University Press, Inc., New York, ix + 262 pp

    Google Scholar 

  • Ancillotto L, Russo D (2014) Selective aggressiveness in European free-tailed bats (Tadarida teniotis): influence of familiarity, age and sex. Naturwissenschaften 101:221–228

    Article  CAS  PubMed  Google Scholar 

  • Ancillotto L, Serangeli MT, Russo D (2012) Spatial proximity between newborns influences the development of social relationships in bats. Ethology 118:331–340

    Article  Google Scholar 

  • Ancillotto L, Serangeli MT, Russo D (2013) Curiosity killed the bat: domestic cats as bat predators. Mamm Biol 78:369–373

    Google Scholar 

  • Archie EA, Moss CJ, Alberts SC (2006) The ties that bind: genetic relatedness predicts the fission and fusion of social groups in wild African elephants. Proc R Soc B 273:513–522

    Article  CAS  PubMed  Google Scholar 

  • Arnold BD (2007) Population structure and sex-biased dispersal in the forest dwelling vespertilionid bat, Myotis septentrionalis. Am Midl Nat 157:374–384

    Article  Google Scholar 

  • Arnold BD, Wilkinson GS (2011) Individual specific contact calls of pallid bats (Antrozous pallidus) attract conspecifics at roosting sites. Behav Ecol Sociobiol 65:1581–1593

    Article  Google Scholar 

  • August TA, Nunn MA, Fensome AG, Linton DM, Mathews F (2014) Sympatric woodland myotis bats form tight-knit social groups with exclusive roost home ranges. PLoS ONE 9:e112225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aureli F, Schaffner CM, Boesch C, Bearder SK, Call J, Chapman CA, Connor R, Di Fiore A, Dunbar RIM, Henzi SP, Holekamp K, Korstjens AH, Layton R, Lee P, Lehmann J, Manson JH, Ramos-Fernandez G, Strier KB, Van Schaik CP (2008) Fission-fusion dynamics: new research frameworks. Curr Anthropol 49:627–654

    Article  Google Scholar 

  • Baigger A, Perony N, Reuter M, Leinert V, Melber M, Grünberger S, Fleischmann D, Kerth G (2013) Bechstein’s bats maintain individual social links despite a complete reorganisation of their colony structure. Naturwissenschaften 100:895–898

    Article  CAS  PubMed  Google Scholar 

  • Barclay RMR (1982) Night roosting behavior of the little brown bat, Myotis lucifugus. J Mammal 63:464–474

    Article  Google Scholar 

  • Barclay RMR, Brigham RM (2001) Year-to-year reuse of tree-roosts by California bats (Myotis californicus) in southern British Columbia. Am Midl Nat 146:80–85

    Article  Google Scholar 

  • Barclay RMR, Kurta A (2007) Ecology and behavior of bats roosting in tree cavities and under bark. In: Lacki MJ, Hayes JP, Kurta A (eds) Bats in forests: conservation and management. Johns Hopkins University Press, Baltimore, Maryland, pp 17–59

    Google Scholar 

  • Bartonička T (2010) Survival rate of bat bugs (Cimex pipistrelli, Heteroptera) under different microclimatic conditions. Parasitol Res 107:827–833

    Article  PubMed  Google Scholar 

  • Bartonička T, Gaisler J (2007) Seasonal dynamics in the numbers of parasitic bugs (Heteroptera, Cimicidae): a possible cause of roost switching in bats (Chiroptera, Vespertilionidae). Parasitol Res 100:1323–1330

    Article  PubMed  Google Scholar 

  • Bartonička T, Řehák Z (2007) Influence of the microclimate of bat boxes on their occupation by the soprano pipistrelle Pipistrellus pygmaeus: possible cause of roost switching. Acta Chiropterologica 9:517–526

    Article  Google Scholar 

  • Bartonička T, Růžičková L (2013) Recolonization of bat roost by bat bugs (Cimex pipistrelli): could parasite load be a cause of bat roost switching? Parasitol Res 112:1615–1622

    Article  PubMed  Google Scholar 

  • Bartonička T, Bielik A, Řehák Z (2008) Roost switching and activity patterns in the soprano pipistrelle, Pipistrellus pygmaeus, during lactation. Ann Zool Fenn 45:503–512

    Article  Google Scholar 

  • BCI—Bat Conservation International (2014) White-nose syndrome resources. http://www.batcon.org/resources/for-specific-issues/white-nose-syndrome

  • Ben-Hamo M, Munoz-Garcia A, Williams JB, Korine C, Pinshow B (2013) Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J Exp Biol 216:573–577

    Article  PubMed  Google Scholar 

  • Bloss J, Acree TE, Bloss JM, Hood WR, Kunz TH (2002) Potential use of chemical cues for colony-mate recognition in the big brown bat, Eptesicus fuscus. J Chem Ecol 28:819–834

    Article  CAS  PubMed  Google Scholar 

  • Bohn KM, Moss CF, Wilkinson GS (2009) Pup guarding by greater spear-nosed bats. Behav Ecol Sociobiol 63:1693–1703

    Article  Google Scholar 

  • Borkin KM, Parsons S (2011) Sex-specific roost selection by bats in clear-fell harvested plantation forest: improved knowledge advises management. Acta Chiropterologica 13:373–383

    Article  Google Scholar 

  • Borkin KM, Parsons S (2014) Effects of clear-fell harvest on bat home range. PLoS ONE 9:e86163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boughman JW (1997) Greater spear-nosed bats give group-distinctive calls. Behav Ecol Sociobiol 40:61–70

    Article  Google Scholar 

  • Boughman JW, Wilkinson GS (1998) Greater spear-nosed bats discriminate group mates by vocalizations. Anim Behav 55:1717–1732

    Article  PubMed  Google Scholar 

  • Bourke AFG (2014) Hamilton’s rule and the causes of social evolution. Philos Trans R Soc B 369:20130362

    Article  Google Scholar 

  • Boyles JG, Storm JJ, Brack V (2008) Thermal benefits of clustering during hibernation: a field test of competing hypotheses on Myotis sodalis. Funct Ecol 22:632–636

    Article  Google Scholar 

  • Brooke AP (1997) Social organization and foraging behaviour of the fishing bat, Noctilio leporinus (Chiroptera: Noctilionidae). Ethology 103:421–436

    Article  Google Scholar 

  • Burda H, Honeycutt RL, Begall S, Locker-Grutjen O, Scharff A (2000) Are naked and common mole-rats eusocial and if so, why? Behav Ecol Sociobiol 47:293–303

    Article  Google Scholar 

  • Burland TM, Barratt EM, Beaumont MA, Racey PA (1999) Population genetic structure and gene flow in a gleaning bat, Plecotus auritus. Proc R Soc B 266:975–980

    Article  PubMed Central  Google Scholar 

  • Campenni M, Manciocco A, Vitale A, Schino G (2015) Exchanging grooming, but not tolerance and aggression in common marmosets (Callithrix jacchus). Am J Primatol 77:222–228

    Article  PubMed  Google Scholar 

  • Carter GG (2015) Cooperation and social bonds in common vampire bats. PhD thesis

    Google Scholar 

  • Carter TC, Feldhamer GA (2005) Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois. For Ecol Manage 219:259–268

    Article  Google Scholar 

  • Carter GG, Wilkinson GS (2013a) Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proc R Soc 280:20122573

    Article  Google Scholar 

  • Carter GG, Wilkinson GS (2013b) Cooperation and conflict in the social lives of bats. In: Adams RA, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, xvi + 547 pp, pp 225–242

    Google Scholar 

  • Carter GG, Skowronski MD, Faure PA, Fenton B (2008) Antiphonal calling allows individual discrimination in white-winged vampire bats. Anim Behav 76:1343–1355

    Article  Google Scholar 

  • Carter GG, Fenton MB, Faure PA (2009) White-winged vampire bats (Diaemus youngi) exchange contact calls. Can J Zool 87:604–608

    Article  Google Scholar 

  • Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720

    Article  Google Scholar 

  • Chaverri G (2010) Comparative social network analysis in a leaf-roosting bat. Behav Ecol Sociobiol 64:1619–1630

    Google Scholar 

  • Chaverri G, Gillam EH (2010) Cooperative signaling behavior of roost location in a leaf roosting bat. Communicative Integr Biol 3:599–601

    Article  Google Scholar 

  • Chaverri G, Gillam EH, Vonhof MJ (2010) Social calls used by a leaf-roosting bat to signal location. Biol Lett 6:441–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaverri G, Gillam EH, Kunz TH (2012) A call-and-response system facilitates group cohesion among disc-winged bats. Behav Ecol 24:481–487

    Article  Google Scholar 

  • Choe JC, Crespi BJ (eds) (1997) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, vii + 541 pp

    Google Scholar 

  • Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212

    Article  Google Scholar 

  • Christe P, Glaizot O, Evanno G, Bruyndonckx N, Devevey G, Yannic G, Patthey P, Maeder A, Vogel P, Arlettaz R (2007) Host sex and ectoparasites choice: preference for, and higher survival on female hosts. J Anim Ecol 76:703–710

    Article  PubMed  Google Scholar 

  • Clement MJ, Castleberry SB (2013) Tree structure and cavity microclimate: implications for bats and birds. Int J Biometeorol 57:437–450

    Article  PubMed  Google Scholar 

  • Clutton-Brock T, Janson C (2012) Primate socioecology at the crossroads: past, present, and future. Evol Anthropol 21:136–150

    Article  PubMed  Google Scholar 

  • Connor RC, Wells RS, Mann J, Read AJ (2000) The bottlenose dolphin. Social relationships in a fission-fusion society. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, xiv + 433 pp, pp 91–126

    Google Scholar 

  • Couzin ID (2006) Behavioral ecology: social organization in fission-fusion societies. Curr Biol 16:R169–R171

    Article  CAS  PubMed  Google Scholar 

  • Couzin ID, Laidre ME (2009) Fission–fusion populations. Curr Biol 19:633–635

    Article  CAS  Google Scholar 

  • Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, Princeton, vii + 192 pp

    Google Scholar 

  • Cross PC, Lloyd-Smith JO, Getz WM (2005) Disentangling association patterns in fission-fusion societies using African buffalo as an example. Anim Behav 69:499–506

    Article  Google Scholar 

  • De Fanis E (1995) The role of odour in the discrimination of conspecifics by pipistrelle bats. Anim Behav 49:835–837

    Article  Google Scholar 

  • Dechmann DKN, Heucke SL, Giuggioli L, Safi K, Voigt CC, Wikelski M (2009) Experimental evidence for group hunting via eavesdropping in echolocating bats. Proc R Soc B 276:2721–2728

    Article  PubMed  PubMed Central  Google Scholar 

  • Dechmann DKN, Kranstauber B, Gibbs D, Wikelski M (2010) Group hunting-a reason for sociality in molossid bats? PLoS ONE 5:e9012. doi:10.1371/journal.pone.0009012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dick CW, Dittmar K (2014) Parasitic bat flies (Diptera : Streblidae and Nycteribiidae): host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds) Bats (Chiroptera) as vectors of diseases and parasites, Parasitology research monographs 5. Springer, New York. xii + 187 pp, pp 131–156

    Google Scholar 

  • Dunbar RIM, Shultz S (2010) Bondedness and sociality. Behaviour 147:775–803

    Article  Google Scholar 

  • Ellison LA, O’Shea TJ, Neubaum DJ, Bowen RA (2007) Factors influencing movement probabilities of big brown bats (Eptesicus fuscus) in buildings. Ecol Appl 17:620–627

    Article  PubMed  Google Scholar 

  • Englert AC, Greene MJ (2009) Chemically-mediated roostmate recognition and roost selection by Brazilian free-tailed bats (Tadarida brasiliensis). PLoS ONE 4:e7781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Entwistle AC, Racey PA, Speakman JR (2000) Social and population structure of a gleaning bat, Plecotus auritus. J Zool 252:11–17

    Article  Google Scholar 

  • Esbérard CEL, Jesus AC, Motta AG, Bergallo HG, Gettinger D (2005) Hesperoctenes fumarius (Hemiptera: Polyctenidae) infesting Molossus rufus (Chiroptera: Molossidae) in Southeastern Brazil. J Parasitol 91:465–467

    Article  PubMed  Google Scholar 

  • Evans LN, Lumsden LF (2011) A comparison of the roosting behaviour of Gould’s wattled bats Chalinolobus gouldii using bat boxes and tree hollows in suburban Melbourne. In: Law B, Eby P, Lunney D, Lumsden L (eds) The biology and conservation of Australian bats. Royal Zoological Society of New South Whales, New South Whales. xi + 498 pp, pp 289–296

    Google Scholar 

  • Evelyn MJ, Stiles DA, Young RA (2004) Conservation of bats in suburban landscapes: roost selection by Myotis yumanensis in a residential area in California. Biol Conserv 115:463–473

    Article  Google Scholar 

  • Feyerabend F, Simon M (2000) Use of roosts and roost switching in a summer colony of 45 kHz phonic type pipistrelle bats (Pipistrellus pipistrellus Schreber, 1774). Myotis 38:51–59

    Google Scholar 

  • Flanders J, Jones G, Benda P, Dietz C, Zhang S, Li G, Sharifi M, Rossiter SJ (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann D, Kerth G (2014) Roosting behavior and group decision making in 2 syntopic bat species with fission-fusion societies. Behav Ecol 25:1–8

    Article  Google Scholar 

  • Fleischmann D, Baumgartner IO, Erasmy M, Gries N, Melber M, Leinert V, Parchem M, Reuter M, Schaer P, Stauffer S, Wagner I, Kerth G (2013) Female bechstein’s bats adjust their group decisions about communal roosts to the level of conflict of interests. Curr Biol 23:1658–1662

    Article  CAS  PubMed  Google Scholar 

  • Fornůsková A, Petit EJ, Bartonička T, Kaňuch P, Butet A, Řehák Z, Bryja J (2014) Strong matrilineal structure in common pipistrelle bats (Pipistrellus pipistrellus) is associated with variability in echolocation calls. Biol J Linn Soc 113:1115–1125

    Article  Google Scholar 

  • Fortuna MA, Popa-Lisseanu AG, Ibáñez C, Bascompte J (2009) The roosting spatial network of a bird-predator bat. Ecology 90:934–944

    Article  PubMed  Google Scholar 

  • Furmankiewicz J, Ruczyński I, Urban R, Jones G (2011) Social calls provide tree-dwelling bats with information about the location of conspecifics at roosts. Ethology 117:480–489

    Article  Google Scholar 

  • Garroway CJ, Broders HG (2007) Nonrandom association patterns at northern long-eared bat maternity roosts. Can J Zool 85:956–964

    Article  Google Scholar 

  • Gaudet CL, Fenton MB (1984) Observational learning in three species of insectivorous bats (Chiroptera). Anim Behav 32:385–388

    Article  Google Scholar 

  • Gillam EH (2007) Eavesdropping by bats on the feeding buzzes of conspecifics. Can J Zool 85:795–801

    Article  Google Scholar 

  • Gillam EH, Chaverri G (2012) Strong individual signatures and weaker group signatures in contact calls of Spix’s disc-winged bat, Thyroptera tricolor. Anim Behav 83:269–276

    Article  Google Scholar 

  • Gillam EH, Chaverri G, Montero K, Sagot M (2013) Social calls produced within and near the roost in two species of tent-making bats, Dermanura watsoni and Ectophylla alba. PLoS ONE 8:e61731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho LN, Cripps JK, Coulson G, Lumsden LF (2013) The effect of ectoparasites on the grooming behaviour of Gould’s wattled bat (Chalinolobus gouldii): an experimental study. Acta Chiropterologica 15:463–472

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hillen J, Kiefer A, Veith M (2010) Interannual fidelity to roosting habitat and flight paths by female western barbastelle bats. Acta Chiropterologica 12:187–195

    Google Scholar 

  • Hinde RA (1976) Interactions, relationships and social structure. Man 11:1–17

    Article  Google Scholar 

  • Hristov NI, Allen LC, Chadwell BA (2013) New advances in the study of group behavior in bats. In: Adams R, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, xvi + 547 pp, pp 271–292

    Google Scholar 

  • Johnson JS, Kropczynski JN, Lacki MJ (2013) Social network analysis and the study of sociality in bats. Acta Chiropterologica 15:1–17

    Article  Google Scholar 

  • Johnson JS, Kropczynski JN, Lacki MJ, Langlois GD (2012) Social networks of Rafinesque’s big-eared bats (Corynorhinus rafinesquii). J Mammal 93:1545–1558

    Google Scholar 

  • Jones PL, Ryan MJ, Page RA (2014) Population and seasonal variation in response to prey calls by an eavesdropping bat. Behav Ecol Sociobiol 68:605–615

    Article  Google Scholar 

  • Kanwal JS, Zhang Z, Feng J (2013) Decision-making and socioemotional vocal behavior in bats. In: Adams R, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, xvi + 547 pp, pp 243–270

    Google Scholar 

  • Kao AB, Miller N, Torney C, Hartnett A, Couzin ID (2014) Collective learning and optimal consensus decisions in social animal groups. PLoS Comput Biol 10:e1003762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kashima K, Ohtsuki H, Satake A (2013) Fission-fusion bat behavior as a strategy for balancing the conflicting needs of maximizing information accuracy and minimizing infection risk. J Theor Biol 318:101–109

    Article  PubMed  Google Scholar 

  • Kazial KA, Kenny TL, Burnett SC (2008) Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls. Ethology 114:469–478

    Article  Google Scholar 

  • Kerth G (2008a) Causes and consequences of sociality in bats. Bioscience 58:737–746

    Article  Google Scholar 

  • Kerth G (2008b) Animal sociality: bat colonies are founded by relatives. Curr Biol 18:R740–R742

    Article  CAS  PubMed  Google Scholar 

  • Kerth G (2010) Group decision-making in fission-fusion societies. Behav Process 84:662–663

    Article  Google Scholar 

  • Kerth G, König B (1999) Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136:1187–1202

    Article  Google Scholar 

  • Kerth G, Petit E (2005) Colonization and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Mol Ecol 14:3943–3950

    Article  PubMed  Google Scholar 

  • Kerth G, Reckardt K (2003) Information transfer about roosts in female Bechstein’s bats: an experimental field study. Proc R Soc B 270:511–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerth G, Van Schaik J (2011) Causes and consequences of living in closed societies: lessons from a long-term socio-genetic study on Bechstein’s bats. Mol Ecol 21:636–646

    Google Scholar 

  • Kerth G, Mayer F, König B (2000) Mitochondrial DNA (mtDNA) reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, Wagner M, König B (2001a) Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behav Ecol Sociobiol 50:283–291

    Article  Google Scholar 

  • Kerth G, Weissmann K, König B (2001b) Day roost selection in female Bechstein’s bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126:1–9

    Article  Google Scholar 

  • Kerth G, Mayer F, Petit E (2002a) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11:1491–1498

    Article  CAS  PubMed  Google Scholar 

  • Kerth G, Safi K, König B (2002b) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52:203–210

    Article  Google Scholar 

  • Kerth G, Almasi B, Ribi N, Thiel D, Lupold S (2003) Social interactions among wild female Bechstein’s bats (Myotis bechsteinii) living in a maternity colony. Acta Ethologica 5:107–114

    Article  Google Scholar 

  • Kerth G, Ebert C, Schmidtke C (2006) Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proc R Soc B 273:2785–2790

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerth G, Perony N, Schweitzer F (2011) Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc R Soc B 278:2761–2767

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilgour RJ, Brigham RM (2013) The relationships between behavioural categories and social influences in the gregarious big brown bat (Eptesicus fuscus). Ethology 119:189–198

    Article  Google Scholar 

  • Kilgour RJ, Faure PA, Brigham RM (2013) Evidence of social preferences in big brown bats (Eptesicus fuscus). Can J Zool 760:756–760

    Article  Google Scholar 

  • Kingston T (2013) Response of bat diversity to forest disturbance in Southeast Asia: insights from long-term research in Malaysia. In: Adams R, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, xvi + 547 pp, pp 169–186

    Google Scholar 

  • Korine C, Daniel S, Pinshow B (2013) Roost selection by female Hemprich’s long-eared bats. Behav Process 199:131–138

    Article  Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford, xiv + 228 pp

    Google Scholar 

  • Krebs JR, Davies NB (1995) An introduction to behavioural ecology, 3rd edition. Blackwell, Oxford, xii + 420 pp

    Google Scholar 

  • Kunz TH, Fenton MB (eds) (2003) Bat ecology. University of Chicago Press, Chicago, xix, 779 pp

    Google Scholar 

  • Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, xix, 779 pp, pp 3–89

    Google Scholar 

  • Lacki MJ, Schwierjohann JH (2001) Day-roost characteristics of northern bats in mixed mesophytic forest. J Wildl Manage 65:482–488

    Article  Google Scholar 

  • Langwig KE, Frick WF, Bried JT, Hicks AC, Kunz TH, Kilpatrick MA (2012) Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol Lett 15:1050–1057

    Article  PubMed  Google Scholar 

  • Lausen CL, Barclay RMR (2006) Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. J Mammal 87:362–370

    Article  Google Scholar 

  • Lehmann J, Boesch C (2004) To fission or to fusion: effects of community size on wild chimpanzee (Pan troglodytes verus) social organisation. Behav Ecol Sociobiol 56:207–216

    Article  Google Scholar 

  • Lewis SE (1995) Roost fidelity of bats: a review. J Mammal 76:481–496

    Article  Google Scholar 

  • Lewis SE (1996) Low roost-site fidelity in pallid bats: associated factors and effect on group stability. Behav Ecol Sociobiol 39:335–344

    Article  Google Scholar 

  • Lima SL, O’Keefe JM (2013) Do predators influence the behaviour of bats? Biol Rev 88:626–644

    Article  PubMed  Google Scholar 

  • Lourenço SI, Palmeirim JM (2004) Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): relevance for the design of bat boxes. Biol Conserv 119:237–243

    Article  Google Scholar 

  • Lourenço SI, Palmeirim JM (2007) Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool 273:161–168

    Article  Google Scholar 

  • Lusseau D, Wilson B, Hammond PS (2006) Quantifying the influence of sociality on population structure in bottlenose dolphins. J Anim Ecol 75:14–24

    Google Scholar 

  • Lučan RK, Radil J (2010) Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia 65:1072–1080

    Article  Google Scholar 

  • Melber M, Fleischmann D, Kerth G (2013) Female Bechstein’s bats share foraging sites with maternal kin but do not forage together with them—results from a long-term study. Ethology 119:793–801

    Article  Google Scholar 

  • Melendez KV, Feng AS (2010) Communication calls of little brown bats display individual-specific characteristics. J Acoust Soc Am 128:919–923

    Article  PubMed  PubMed Central  Google Scholar 

  • Metheny JD, Kalcounis-Rueppell MC, Willis CKR, Kolar KA, Brigham RM (2008a) Genetic relationships between roost-mates in a fission–fusion society of tree-roosting big brown bats (Eptesicus fuscus). Behav Ecol Sociobiol 62:1043–1051

    Article  Google Scholar 

  • Metheny JD, Kalcounis-Rueppell MC, Bondo KJ, Brigham RM (2008b) A genetic analysis of group movement in an isolated population of tree-roosting bats. Proc R Soc B 275:2265–2272

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaelsen TC, Jensen KH, Högstedt G (2014) Roost site selection in pregnant and lactating soprano pipistrelles (Pipistrellus pygmaeus Leach, 1825) at the species northern extreme: the importance of warm and safe roosts. Acta Chiropterologica 16:349–357

    Article  Google Scholar 

  • Mikula P, Hromada M, Tryjanowski P (2013) Bats and swifts as food of the European kestrel (Falco tinnunculus) in a small town in Slovakia. Ornis Fennica 90:178–185

    Google Scholar 

  • Montes C, Cuadrillero C, Vilella D (2002) Maintenance of a laboratory colony of Cimex lectularius (Hemiptera: Cimicidae) using an artificial feeding technique. J Med Entomol 39:675–679

    Article  CAS  PubMed  Google Scholar 

  • Naďo L, Kaňuch P (2013) Dawn swarming in tree-dwelling bats—an unexplored behaviour. Acta Chiropterologica 15:387–392

    Article  Google Scholar 

  • O’Donnell CFJ (2000) Cryptic local populations in a temperate rainforest bat Chalinolobus tuberculatus in New Zealand. Anim Conserv 3:287–297

    Article  Google Scholar 

  • O’Donnell CFJ, Sedgeley JA (1999) Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in temperate rainforest in New Zealand. J Mammal 80:913–923

    Article  Google Scholar 

  • O’Mara MT, Dechmann DKN, Page RA (2014) Frugivorous bats evaluate the quality of social information when choosing novel foods. Behav Ecol 25:1233–1239

    Article  Google Scholar 

  • Olson CR, Barclay RMR (2013) Concurrent changes in group size and roost use by reproductive female little brown bats (Myotis lucifugus). Can J Zool 91:149–155

    Article  Google Scholar 

  • Page RA, Ryan MJ (2006) Social transmission of novel foraging behavior in bats: frog calls and their referents. Curr Biol 16:1201–1205

    Article  CAS  PubMed  Google Scholar 

  • Papadatou E, Butlin RK, Altringham JD (2008) Seasonal roosting habits and population structure of the long-fingered bat Myotis capaccinii in Greece. J Mammal 89:503–512

    Google Scholar 

  • Patriquin KJ (2012) The causes and consequences of fission-fusion dynamics in female northern long-eared bats (Myotis septentrionalis). PhD thesis

    Google Scholar 

  • Patriquin KJ, Leonard ML, Broders HG, Garroway CJ (2010) Do social networks of female northern long-eared bats vary with reproductive period and age? Behav Ecol Sociobiol 64:899–913

    Article  Google Scholar 

  • Patriquin KJ, Palstra F, Leonard ML, Broders HG (2013) Female northern myotis (Myotis septentrionalis) that roost together are related. Behav Ecol 24:949–954

    Article  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Trop Ecol 23:177–189

    Article  Google Scholar 

  • Pearce RD, O’Shea TJ (2007) Ectoparasites in an urban population of big brown bats (Eptesicus fuscus) in Colorado. J Parasitol 93:518–530

    Google Scholar 

  • Pfalzer G, Kusch J (2003) Structure and variability of bat social calls: implications for specificity and individual recognition. J Zool Lond 261:21–33

    Article  Google Scholar 

  • Popa-Lisseanu AG, Bontadina F, Mora O, Ibáñez C (2008) Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim Behav 75:471–482

    Article  Google Scholar 

  • Postawa T, Furman A (2014) Abundance patterns of ectoparasites infesting different populations of Miniopterus species in their contact zone in Asia Minor. Acta Chiropterologica 16:387–395

    Article  Google Scholar 

  • Postawa T, Gas A (2009) Do the thermal conditions in maternity colony roost determine the size of young bats? Comparison of attic and cave colonies of Myotis myotis in Southern Poland. Folia Zool 58:396–408

    Google Scholar 

  • Postawa T, Szubert-Kruszyńska A (2014) Is parasite load dependent on host aggregation size? The case of the greater mouse-eared bat Myotis myotis (Mammalia: Chiroptera) and its parasitic mite Spinturnix myoti (Acari: Gamasida). Parasitol Res 113:1803–1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Postawa T, Szubert-Kruszynska A, Ferenc H (2014) Differences between populations of Spinturnix myoti (Acari: Mesostigmata) in breeding and non-breeding colonies of Myotis myotis (Chiroptera) in central Europe: the effect of roost type. Folia Parasitol 61:581–588

    PubMed  Google Scholar 

  • Pretzlaff I, Kerth G, Dausmann KH (2010) Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Die Naturwissenschaften 97:353–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Fernández G, Boyer D, Gómez VP (2006) A complex social structure with fission–fusion properties can emerge from a simple foraging model. Behav Ecol Sociobiol 60:536–549

    Article  Google Scholar 

  • Ratcliffe JM, ter Hofstede HM (2005) Roosts as information centres: social learning of food preferences in bats. Biol Lett 1:72–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Reckardt K, Kerth G (2006) The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol Res 98:237–243

    Article  PubMed  Google Scholar 

  • Reckardt K, Kerth G (2007) Roost selection and roost switching of female Bechstein’s bats (Myotis bechsteinii) as a strategy of parasite avoidance. Oecologia 154:581–588

    Article  PubMed  Google Scholar 

  • Rhodes M (2007) Roost fidelity and fission-fusion dynamics of white-striped free-tailed bats (Tadarida australis). J Mammal 88:1252–1260

    Article  Google Scholar 

  • Ross G, Holderied MW (2013) Learning and memory in bats: a case study on object discrimination in flower-visiting bats. In: Adams R, Pedersen SC (eds) Bat evolution, ecology, and conservation. Springer, New York, xvi + 547 pp, pp 207–224

    Google Scholar 

  • Ruczyński I, Bartoń KA (2012) Modelling sensory limitation: the role of tree selection, memory and information transfer in bats’ roost searching strategies. PLoS ONE 7:e44897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruczyński I, Kalko EKV, Siemers BM (2007) The sensory basis of roost finding in a forest bat, Nyctalus noctula. J Exp Biol 210:3607–3615

    Article  PubMed  Google Scholar 

  • Ruczyński I, Kalko EKV, Siemers BM (2009) Calls in the forest: a comparative approach to how bats find tree cavities. Ethology 115:167–177

    Article  Google Scholar 

  • Russell YI, Phelps S (2013) How do you measure pleasure? A discussion about intrinsic costs and benefits in primate allogrooming. Biol Philos 28:1005–1020

    Article  Google Scholar 

  • Russo D, Cistrone L, Jones G (2005) Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28:769–776

    Article  Google Scholar 

  • Safi K (2008) Social bats: the males’ perspective. J Mammal 89:1342–1350

    Article  Google Scholar 

  • Safi K, Kerth G (2003) Secretions of the interaural gland contain information about individuality and colony membership in the Bechstein’s bat. Anim Behav 65:363–369

    Article  Google Scholar 

  • Sagot M, Stevens RD (2012) The evolution of group stability and roost lifespan: perspectives from tent-roosting bats. Biotropica 44:90–97

    Article  Google Scholar 

  • Schino G, Aureli F (2009) Reciprocal altruism in primates: partner choice, cognition, and emotions. Adv Study Behav 39:45–69

    Article  Google Scholar 

  • Schmidt S (2013) Beyond echolocation: emotional acoustic communication in bats. In: Altenmüller E, Schmidt S, Zimmermann E (eds) Evolution of emotional communication: from sounds in nonhuman mammals to speech and music in man. Oxford University Press, Oxford, xiv + 376 pp, pp 301–315

    Google Scholar 

  • Schöner CR, Schöner MG, Kerth G (2010) Similar is not the same: social calls of conspecifics are more effective in attracting wild bats to day roosts than those of other bat species. Behav Ecol Sociobiol 64:2053–2063

    Article  Google Scholar 

  • Sedgeley JA (2001) Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. J Appl Ecol 38:425–438

    Article  Google Scholar 

  • Silk J (2007) The adaptive value of sociality in mammalian groups. Philos Trans R Soc B 362:539–559

    Article  Google Scholar 

  • Silvis A, Ford WM, Britzke ER, Johnson JB (2014a) Association, roost use and simulated disruption of Myotis septentrionalis maternity colonies. Behav Process 103:283–290

    Article  Google Scholar 

  • Silvis A, Kniowski AB, Gehrt SD, Ford WM (2014b) Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis). PLoS ONE 9:e96937

    Article  PubMed  PubMed Central  Google Scholar 

  • Storz JF, Bhat HR, Kunz TH (2000) Social structure of a polygynous tent-making bat, Cynopterus sphinx (Megachiroptera). J Zool 251(2):151–165

    Google Scholar 

  • Sueur C, King AJ, Conradt L, Kerth G, Lusseau D, Mettke-Hofmann C, Schaffner CM, Williams L, Zinner D, Aureli F (2011) Collective decision-making and fission-fusion dynamics: a conceptual framework. Oikos 120:1608–1617

    Article  Google Scholar 

  • ter Hofstede HM, Fenton MB (2005) Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J Zool 266:333–340

    Article  Google Scholar 

  • Terrien J, Perret M, Aujard F (2011) Behavioral thermoregulation in mammals: a review. Front Biosci 16:1428–1444

    Article  Google Scholar 

  • Threlfall C, Law B, Banks PB (2013) Odour cues influence predation risk at artificial bat roosts in urban bushland. Biol Lett 9:20121144

    Article  PubMed  PubMed Central  Google Scholar 

  • Trevelin LC, Silveira M, Port-Carvalho M, Homem DH, Cruz-Neto AP (2013) Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. For Ecol Manage 291:136–143

    Article  Google Scholar 

  • Trousdale AW, Beckett DC, Hammond SL (2008) Short-term fidelity of Rafinesque’s big-eared bat (Corynorhinus rafinesquii). J Mammal 89:477–484

    Google Scholar 

  • Turbill C, Geiser F (2006) Thermal physiology of pregnant and lactating female and male long-eared bats, Nyctophilus geoffroyi and N. gouldi. J Comp Physiol B 176:165–172

    Article  PubMed  Google Scholar 

  • Veilleux JP, Veilleux SL (2004) Intra-annual and interannual fidelity to summer roost areas by female eastern pipistrelles, Pipistrellus subflavus. Am Midl Nat 152:196–200

    Article  Google Scholar 

  • Voigt-Heucke SL, Taborsky M, Dechmann DKN (2010) A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Anim Behav 80:59–67. doi:10.1016/j.anbehav.2010.03.025

    Article  Google Scholar 

  • Vonhof MJ, Wilkinson L (1999) Roosting habitat requirements of northern long-eared bats (Myotis septentrionalis) in the boreal forests of northeastern British Columbia: year 2. Report prepared for the B.C. Ministry of Environment, Lands and Parks, Fort St. John, 88 pp

    Google Scholar 

  • Vonhof MJ, Whitehead H, Fenton MB (2004) Analysis of Spix’s disc-winged bat association patterns and roosting home ranges reveal a novel social structure among bats. Anim Behav 68:507–521

    Article  Google Scholar 

  • Webber QMR, McGuire LP, Smith SB, Willis CKR (2015) Host behaviour, age and sex correlate with ectoparasite prevalence and intensity in a colonial mammal, the little brown bat. Behaviour 152:83–105

    Article  Google Scholar 

  • Whitehead H (2007) Learning, climate and the evolution of cultural capacity. J Theor Biol 245:341–350

    Article  PubMed  Google Scholar 

  • Whitehead H (2008) Analyzing animal societies: quantitative methods for vertebrate social analysis. University of Chicago Press, Chicago 336 pp

    Book  Google Scholar 

  • Wilkinson GS (1985) The social organization of the common vampire bat. I. Pattern and cause of association. Behav Ecol Sociobiol 17:111–121

    Google Scholar 

  • Wilkinson GS (1986) Social grooming in the common vampire bat, Desmodus rotundus. Anim Behav 34:1880–1889

    Article  Google Scholar 

  • Wilkinson GS (1992) Communal nursing in the evening bat, Nycticeius humeralis. Behav Ecol Sociobiol 31:225–235

    Article  Google Scholar 

  • Willis CKR, Brigham RM (2004) Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Anim Behav 68:495–505

    Article  Google Scholar 

  • Willis CKR, Brigham RM (2007) Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav Ecol Sociobiol 62:97–108

    Article  Google Scholar 

  • Willis CKR, Voss CM, Brigham RM (2006) Roost selection by forest-living female big brown bats (Eptesicus fuscus). J Mammal 87:345–350

    Article  Google Scholar 

  • Wittemyer G, Douglas-Hamilton I, Getz WM (2005) The socioecology of elephants: analysis of the processes creating multitiered social structures. Anim Behav 69:1357–1371

    Article  Google Scholar 

  • Wright GS, Wilkinson GS, Moss CF (2011) Social learning of a novel foraging task by big brown bats (Eptesicus fuscus). Anim Behav 82:1075–1083

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krista J. Patriquin or John M. Ratcliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patriquin, K.J., Ratcliffe, J.M. (2016). Should I Stay or Should I Go? Fission–Fusion Dynamics in Bats. In: Ortega, J. (eds) Sociality in Bats. Springer, Cham. https://doi.org/10.1007/978-3-319-38953-0_4

Download citation

Publish with us

Policies and ethics