Skip to main content

PACAP Signaling in Neuroprotection

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

  • 652 Accesses

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts its neuroprotective effects mainly through its PACAP-preferring receptor PAC1. Upon binding to this receptor and stimulation of adenylate cyclase and phospholipase C through G proteins, PACAP activates multiple signaling cascades to promote its neuroprotective actions. The neuroprotective function of PACAP has been demonstrated in vitro and in vivo during neuronal differentiation, in neurodegenerative disease models, and after administration of toxic molecules. PACAP neuroprotective activity mainly involves different kinases including protein kinase A, extracellular regulated kinase, AMP kinase, or phosphatidylinositol-3′OH kinase which in turn activate several transcription factors such as the cAMP response element-binding protein, activating transcription factor 2, or nuclear factor kappa B to regulate different genes involved in cell survival. PACAP also induces neuroprotection via indirect pathways involving other neurotrophic factors, cytokines or chemokines. These different pathways activated by PACAP converge to inhibit caspases and therefore apoptosis during neurodevelopment or in various pathological conditions of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  2. Arimura A, Somogyvári-Vigh A, Miyata A, Mizuno K, Coy DH, Kitaba C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes: endocrinology 129. Endocrinoloy. 1991;129:2787–9.

    Article  CAS  Google Scholar 

  3. Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Kugoh H, et al. Structure of the human pituitary adenylate cyclase activating polypeptide (PACAP) gene. Biochim Biophys Acta. 1992;1129:199–206.

    Article  CAS  PubMed  Google Scholar 

  4. Miyata A, Jiang L, Dahl RR, Kitaba C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170:643–8.

    Article  CAS  PubMed  Google Scholar 

  5. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev. 1998;50:265–70.

    CAS  PubMed  Google Scholar 

  6. Lu N, Zhou R, DiCicco-Bloom E. Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J Neurosci Res. 1998;53:651–62.

    Article  CAS  PubMed  Google Scholar 

  7. Mercer A, Ronnholm H, Holmberg J, Lundh H, Heidrich J, Zachrisson O, et al. PACAP promotes neural stem cell proliferation in adult mouse brain. J Neurosci Res. 2004;76:205–15.

    Article  CAS  PubMed  Google Scholar 

  8. Tatsuno I, Morio H, Tanaka T, Uchida D, Hirai A, Tamura Y, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulator of astrocytes: PACAP stimulates proliferation and production of interleukin 6 (IL-6), but not nerve growth factor (NGF), in cultured rat astrocytes. Ann N Y Acad Sci. 1996;805:482–8.

    Article  CAS  PubMed  Google Scholar 

  9. DiCicco-Bloom E, Lu N, Pintar JE, Zhang J. The PACAP ligand/receptor system regulates cerebral cortical neurogenesis. Ann N Y Acad Sci. 1998;865:274–89.

    Article  CAS  PubMed  Google Scholar 

  10. Lu N, DiCicco-Bloom E. Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc Natl Acad Sci. 1997;94:3357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E. PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci. 2001;4:123–4.

    Article  CAS  PubMed  Google Scholar 

  12. Waschek JA, Casillas RA, Nguyen TB, DiCicco-Bloom EM, Carpenter EM, Rodriguez WI. Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Proc Natl Acad Sci. 1998;95:9602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicot A, DiCicco-Bloom E. Regulation of neuroblast mitosis is determined by PACAP receptor isoform expression. Proc Natl Acad Sci. 2001;98:4758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cazillis M, Gonzalez BJ, Billardon C, Lombet A, Fraichard A, Samarut J, et al. VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci. 2004;19:798–808.

    Article  PubMed  Google Scholar 

  15. Ohno F, Watanabe J, Sekihara H, Hirabayashi T, Arata S, Kikuyama S, et al. Pituitary adenylate cyclase-activating polypeptide promotes differentiation of mouse neural stem cells into astrocytes. Regul Pept. 2005;126:115–22.

    Article  CAS  PubMed  Google Scholar 

  16. Hoshino M, Li M, Zheng LQ, Suzuki M, Mochizuki T, Yanaihara N. Pituitary adenylate cyclase activating peptide and vasoactive intestinal polypeptide: differentiation effects on human neuroblastoma NB-OK-1 cells. Neurosci Lett. 1993;159:35–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience. 1997;78:419–30.

    Article  CAS  PubMed  Google Scholar 

  18. Zhou CJ, Shioda S, Shibanuma M, Nakajo S, Funahashi H, Nakai Y, et al. Pituitary adenylate cyclase-activating polypeptide receptors during development: expression in the rat embryo at primitive streak stage. Neuroscience. 1999;93:375–91.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou C-J, Yada T, Kohno D, Kikuyama S, Suzuki R, Mizushima H, et al. PACAP activates PKA, PKC and Ca2+ signaling cascades in rat neuroepithelial cells. Peptides. 2001;22:1111–7.

    Article  CAS  PubMed  Google Scholar 

  20. Deutsch PJ, Sun Y. The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem. 1992;267:5108–13.

    CAS  PubMed  Google Scholar 

  21. Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, et al. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol. 2008;29:128–41.

    Article  CAS  PubMed  Google Scholar 

  22. Allais A, Burel D, Isaac ER, Gray SL, Basille M, Ravni A, et al. Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide: Altered cerebellar development in PACAP-/- mice. Eur J Neurosci. 2007;25:2604–18.

    Article  PubMed  Google Scholar 

  23. Vaudry D, Gonzalez BJ, Basille M, Fournier A, Vaudry H. Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proc Natl Acad Sci. 1999;96:9415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fournier A, Vaudry H. PACAP acts as a neurotrophic factor during histogenesis of the rat cerebellar cortex. Ann N Y Acad Sci. 2000;921:293–9.

    Article  CAS  PubMed  Google Scholar 

  25. Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, et al. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci. 2000;97:13390–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Villalba M, Bockaert J, Journot L. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci. 1997;17:83–90.

    CAS  PubMed  Google Scholar 

  27. Ito Y, Arakawa M, Ishige K, Fukuda H. Comparative study of survival signal withdrawal-and 4-hydroxynonenal-induced cell death in cerebellar granule cells. Neurosci Res. 1999;35:321–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bhave SV, Hoffman PL. Phosphatidylinositol 3′-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol: mechanisms of PACAP neuroprotection and effects of ethanol. J Neurochem. 2003;88:359–69.

    Article  Google Scholar 

  29. Botia B, Jolivel V, Burel D, Le Joncour V, Roy V, Naassila M, et al. Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotox Res. 2011;19:423–34.

    Article  CAS  PubMed  Google Scholar 

  30. Vaudry D, Rousselle C, Basille M, Falluel-Morel A, Pamantung TF, Fontaine M, et al. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proc Natl Acad Sci. 2002;99:6398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falluel-Morel A, Aubert N, Vaudry D, Basille M, Fontaine M, Fournier A, et al. Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells: PACAP and C2-ceramide control mitochondrial apoptotic pathway. J Neurochem. 2004;91:1231–43.

    Article  CAS  PubMed  Google Scholar 

  32. Vaudry D, Falluel-Morel A, Basille M, Pamantung TF, Fontaine M, Fournier A, et al. Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. J Neurosci Res. 2003;72:303–16.

    Article  CAS  PubMed  Google Scholar 

  33. Aubert N, Vaudry D, Falluel-Morel A, Desfeux A, Fisch C, Ancian P, et al. PACAP prevents toxicity induced by cisplatin in rat and primate neurons but not in proliferating ovary cells: Involvement of the mitochondrial apoptotic pathway. Neurobiol Dis. 2008;32:66–80.

    Article  CAS  PubMed  Google Scholar 

  34. Rácz B, Gasz B, Borsiczky B, Gallyas F, Tamás A, Józsa R, et al. Protective effects of pituitary adenylate cyclase activating polypeptide in endothelial cells against oxidative stress-induced apoptosis. Gen Comp Endocrinol. 2007;153:115–23.

    Article  PubMed  Google Scholar 

  35. Vaudry D, Pamantung TF, Basille M, Rousselle C, Fournier A, Vaudry H, et al. PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. Eur J Neurosci. 2002;15:1451–60.

    Article  CAS  PubMed  Google Scholar 

  36. Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE. Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides. 2005;26:2518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Waschek JA. Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci. 2002;24:14–23.

    Article  CAS  PubMed  Google Scholar 

  38. Zigmond RE. LIF, NGF, and the cell body response to axotomy. Neuroscientist. 1997;3:176–85.

    Article  CAS  Google Scholar 

  39. Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A. Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke. 2000;31:1411–7.

    Article  CAS  PubMed  Google Scholar 

  40. Reglodi D, Tamas A, Somogyvari-Vigh A, Szanto Z, Kertes E, Lenard L, et al. Effects of pretreatment with PACAP on the infarct size and functional outcome in rat permanent focal cerebral ischemia. Peptides. 2002;23:2227–34.

    Article  CAS  PubMed  Google Scholar 

  41. Somogyvári-Vigh A, Pan W, Reglodi D, Kastin AJ, Arimura A. Effect of middle cerebral artery occlusion on the passage of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier in the rat. Reg Pept. 2000;91:89–95.

    Article  Google Scholar 

  42. Reglődi D, Lubics A, Tamás A, Szalontay L, Lengvári I. Pituitary adenylate cyclase activating polypeptide protects dopaminergic neurons and improves behavioral deficits in a rat model of Parkinson’s disease. Behav Brain Res. 2004;151:303–12.

    Article  PubMed  Google Scholar 

  43. Reglődi D, Tamás A, Lubics A, Szalontay L, Lengvári I. Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Reg Pept. 2004;123:85–94.

    Article  Google Scholar 

  44. Deguil J, Jailloux D, Page G, Fauconneau B, Houeto J-L, Philippe M, et al. Neuroprotective effects of pituitary adenylate cyclase–activating polypeptide (PACAP) in MPP + -induced alteration of translational control in Neuro-2a neuroblastoma cells. J Neurosci Res. 2007;85:2017–25.

    Article  CAS  PubMed  Google Scholar 

  45. Wang G, Qi C, Fan G-H, Zhou H-Y, Chen S-D. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett. 2005;579:4005–11.

    Article  CAS  PubMed  Google Scholar 

  46. Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K. The neuropeptide PACAP attenuates β-amyloid (1–42)-induced toxicity in PC12 cells. Peptides. 2002;23:1471–8.

    Article  CAS  PubMed  Google Scholar 

  47. Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, et al. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer’s disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 2011;25:3208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kienlen Campard P, Crochemore C, René F, Monnier D, Koch B, Loeffler JP. PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol. 1997;16:323–33.

    Article  CAS  PubMed  Google Scholar 

  49. Mei YA, Vaudry D, Basille M, Castel H, Fournier A, Vaudry H, et al. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of IK in the anti-apoptotic action of PACAP. Eur J Neurosci. 2004;19:1446–58.

    Article  CAS  PubMed  Google Scholar 

  50. Takei N, Skoglösa Y, Lindholm D. Neurotrophic and neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on mesencephalic dopaminergic neurons. J Neurosci Res. 1998;54:698–706.

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka J, Koshimura K, Murakami Y, Sohmiya M, Yanaihara N, Kato Y. Neuronal protection from apoptosis by pituitary adenylate cyclase-activating polypeptide. Reg Pept. 1997;72:1–8.

    Article  CAS  Google Scholar 

  52. Journot L, Villalba M, Bockaert J. PACAP-38 protects cerebellar granule cells from apoptosis. Ann N Y Acad Sci. 1998;865:100–10.

    Article  CAS  PubMed  Google Scholar 

  53. Barrie AP, Clohessy AM, Buensuceso CS, Rogers MV, Allen JM. Pituitary adenylyl cyclase-activating peptide stimulates extracellular signal-regulated kinase 1 or 2 (ERK1/2) activity in a Ras-independent, mitogen-activated protein Kinase/ERK kinase 1 or 2-dependent manner in PC12 cells. J Biol Chem. 1997;272:19666–71.

    Article  CAS  PubMed  Google Scholar 

  54. Bouschet T, Perez V, Fernandez C, Bockaert J, Eychene A, Journot L. Stimulation of the ERK pathway by GTP-loaded Rap1 requires the concomitant activation of Ras, protein kinase C, and protein kinase A in neuronal cells. J Biol Chem. 2003;278:4778–85.

    Article  CAS  PubMed  Google Scholar 

  55. Jamen F, Bouschet T, Laden J-C, Bockaert J, Brabet P. Up-regulation of the PACAP type-1 receptor (PAC1) promoter by neurotrophins in rat PC12 cells and mouse cerebellar granule cells via the Ras/mitogen-activated protein kinase cascade. J Neurochem. 2002;82:1199–207.

    Article  CAS  PubMed  Google Scholar 

  56. Obara Y, Horgan AM, Stork PJS. The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. J Neurochem. 2007;101:470–82.

    Article  CAS  PubMed  Google Scholar 

  57. Emery AC, Eiden LE. Signaling through the neuropeptide GPCR PAC1 induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J. 2012;26:3199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aubert N, Falluel-Morel A, Vaudry D, Xifro X, Rodriguez-Alvarez J, Fisch C, et al. PACAP and C2-ceramide generate different AP-1 complexes through a MAP-kinase-dependent pathway: involvement of c-Fos in PACAP-induced Bcl-2 expression. J Neurochem. 2006;99:1237–50.

    Article  CAS  PubMed  Google Scholar 

  59. Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience. 1998;84:801–12.

    Article  CAS  PubMed  Google Scholar 

  60. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  CAS  PubMed  Google Scholar 

  61. Ohtaki H, Nakamachi T, Dohi K, Aizawa Y, Takaki A, Hodoyama K, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci. 2006;103:7488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rácz B, Gallyas F, Kiss P, Tóth G, Hegyi O, Gasz B, et al. The neuroprotective effects of PACAP in monosodium glutamate-induced retinal lesion involve inhibition of proapoptotic signaling pathways. Reg Pept. 2006;137:20–6.

    Article  Google Scholar 

  63. Rácz B, Gasz B, Gallyas F, Kiss P, Tamás A, Szántó Z, et al. PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. Reg Pept. 2008;145:105–15.

    Article  Google Scholar 

  64. Dohi K, Mizushima H, Nakajo S, Ohtaki H, Matsunaga S, Aruga T, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways. Reg Pept. 2002;109:83–8.

    Article  CAS  Google Scholar 

  65. Shioda S, Ozawa H, Dohi K, Mizushima H, Matsumoto K, Nakajo S, et al. PACAP protects hippocampal neurons against apoptosis: involvement of JNK/SAPK signaling pathway. Ann N Y Acad Sci. 2006;865:111–7.

    Article  Google Scholar 

  66. May V, Lutz E, MacKenzie C, Schutz KC, Dozark K, Braas KM. Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase and vesicle endocytosis for neuronal survival. J Biol Chem. 2010;285:9749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hur KC. Protein kinase A functions as a negative regulator of C-jun N-terminal kinase but not of p38 mitogen-activated protein kinase in PC12 cells. Integr Biosci. 2005;9:173–9.

    Google Scholar 

  68. Fan J, Xu G, Nagel DJ, Hua Z, Zhang N, Yin G. A model of ischemia and reperfusion increases JNK activity, inhibits the association of BAD and 14-3-3, and induces apoptosis of rabbit spinal neurocytes. Neurosci Lett. 2010;473:196–201.

    Article  CAS  PubMed  Google Scholar 

  69. Kamada H, Nito C, Endo H, Chan PH. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007;27:521–33.

    Article  CAS  PubMed  Google Scholar 

  70. Lang F, Gulbins E, Szabo I, Lepple-Wienhues A, Huber SM, Duranton C, et al. Cell volume and the regulation of apoptotic cell death. J Mol Recognit. 2004;17:473–80.

    Article  CAS  PubMed  Google Scholar 

  71. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000;52:557–93.

    CAS  PubMed  Google Scholar 

  72. Colom LV, Diaz ME, Beers DR, Neely A, Xie W-J, Appel SH. Role of potassium channels in amyloid-induced cell death. J Neurochem. 1998;70:1925–34.

    Article  CAS  PubMed  Google Scholar 

  73. Wang Z. Roles of K + channels in regulating tumour cell proliferation and apoptosis. Eur J Physiol. 2004;448:274–86.

    Article  CAS  Google Scholar 

  74. Yu SP, Yeh C-H, Sensi SL, Gwag BJ, Canzoniero MT, Farhangrazi ZS, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science. 1997;278:114–7.

    Article  CAS  PubMed  Google Scholar 

  75. Yu SP, Yeh C-H, Gottron F, Wang X, Grabb MC, Choi DW. Role of outward delayed rectifier K+ current in ceramide-induced caspases activation and apoptosis in cultures cortical neurons. J Neurochem. 1999;73:933–41.

    Article  CAS  PubMed  Google Scholar 

  76. Yu SP, Yeh C-H, Strasser U, Tian M, Choi DW. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science. 1999;284:336–9.

    Article  CAS  PubMed  Google Scholar 

  77. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, et al. Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J. 2008;22:1756–68.

    Article  CAS  PubMed  Google Scholar 

  78. Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A. Selenoprotein T deficiency leads to neurodevelopmental abnormalities and hyperactive behavior in mice. Mol Neurobiol. In press.

    Google Scholar 

  79. Baxter PS, Martel M-A, McMahon A, Kind PC, Hardingham GE. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1: activity-dependent neuroprotection by PACAP signaling. J Neurochem. 2011;118:365–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McIlvain HB, Baudy A, Sullivan K, Liu D, Pong K, Fennell M, et al. Pituitary adenylate cyclase-activating peptide (PACAP) induces differentiation in the neuronal F11 cell line through a PKA-dependent pathway. Brain Res. 2006;1077:16–23.

    Article  CAS  PubMed  Google Scholar 

  81. Racz B, Tamas A, Kiss P, Toth G, Gasz B, Borsiczky B, et al. Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann N Y Acad Sci. 2006;1070:507–11.

    Article  CAS  PubMed  Google Scholar 

  82. Stetler RA, Gao Y, Zukin RS, Vosler PS, Zhang L, Zhang F, et al. Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci. 2010;107:3204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Castorina A, Waschek JA, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in Schwann cell-like cultures. PLoS One. 2015;10:e0117799.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Manecka D-L, Mahmood SF, Grumolato L, Lihrmann I, Anouar Y. Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes both survival and neuritogenesis in PC12 cells through activation of nuclear factor B (NF- B) pathway: involvement of extracellular signal-regulated kinase (ERK), calcium and c-REL. J Biol Chem. 2013;288:14936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Onoue S, Ohshima K, Endo K, Yajima T, Kashimoto K. PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106–126. FEBS Lett. 2002;522:65–70.

    Article  CAS  PubMed  Google Scholar 

  86. Lazarovici P, Jiang H, Fink D. The 38-amino-acid form of pituitary adenylate cyclase-activating polypeptide induces neurite outgrowth in PC12 cells that is dependent on protein kinase C and extracellular signal-regulated kinase but not on protein kinase A, nerve growth factor receptor tyrosine kinase, p21ras G protein, and pp60c-src cytoplasmic tyrosine kinase. Mol Pharmacol. 1998;54:547–58.

    CAS  PubMed  Google Scholar 

  87. Han P, Lucero MT. Pituitary adenylate cyclase-activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons. Neuroscience. 2005;134:745–56.

    Article  CAS  PubMed  Google Scholar 

  88. Han P, Lucero MT. Pituitary adenylate cyclase activating polypeptide reduces expression of Kv1.4 and Kv4.2 subunits underlying A-type K+ current in adult mouse olfactory neuroepithelia. Neuroscience. 2006;138:411–9.

    Article  CAS  PubMed  Google Scholar 

  89. Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabeitia E, Del Rio J. BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuropharmacol Neurotoxicol. 2001;12:919–23.

    CAS  Google Scholar 

  90. Brown D, Tamas A, Reglodi D, Tizabi Y. PACAP Protects against inflammatory-mediated toxicity in dopaminergic SH-SY5Y cells: implication for Parkinson’s disease. Neurotox Res. 2014;26:230–9.

    Article  CAS  PubMed  Google Scholar 

  91. Manecka D-L, Lelièvre V, Anouar Y. Inhibition of constitutive TNF production is associated with PACAP-mediated differentiation in PC12 cells. FEBS Lett. 2014;588:3008–14.

    Article  CAS  PubMed  Google Scholar 

  92. Brenneman DE, Hauser JM, Spong CY, Phillips TM. Chemokine release is associated with the protective action of PACAP-38 against HIV envelope protein neurotoxicity. Neuropeptides. 2002;36:271–80.

    Article  CAS  PubMed  Google Scholar 

  93. Sanchez A, Tripathy D, Grammas P. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides. 2009;43:315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shioda S. Pleiotropic functions of PACAP in the CNS: neuroprotection and neurodevelopment. Ann N Y Acad Sci. 2006;1070:550–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Anouar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manecka, DL., Boukhzar, L., Falluel-Morel, A., Lihrmann, I., Anouar, Y. (2016). PACAP Signaling in Neuroprotection. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_32

Download citation

Publish with us

Policies and ethics