Skip to main content

Fundamentals of Faster-than-Nyquist Signaling

  • Chapter
  • First Online:
5G Mobile Communications

Abstract

This chapter presents the fundamentals of Faster-than- Nyquist (FTN) signaling. As originally introduced, FTN increases the bit-rate in the signaling bandwidth by packing symbols closer in time, at the cost of introducing intersymbol interference (ISI). We begin with the Euclidean distance properties of bandwidth efficient pulses at FTN rates and describe receivers that mitigate the severe ISI. The FTN achievable information rate is compared with the Nyquist information rate for practical pulses. We then discuss FTN extension to multicarrier systems with not only time packing but also subcarrier, optimizing both the time and frequency packing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.E. Mazo, Faster-than-Nyquist signaling. Bell Syst. Tech. J. 54, 1451–1462 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. G.D. Forney, Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans. Inf. Theory IT-18, 363–378 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Ungerboeck, Adaptive maximum-likelihood receiver for carrier-modulated data-transmission systems. IEEE Trans. Commun. COM-22, 624–636 (1974)

    Article  Google Scholar 

  4. G.J. Foschini, Contrasting performance of faster binary signaling with QAM. Bell Syst. Tech. J. 63, 1419–1445 (1984)

    Google Scholar 

  5. D. Dasalukunte, V. Owall, F. Rusek, J.B. Anderson, Faster than Nyquist Signaling: Algorithms to Silicon (Springer, Cham, 2014)

    Book  Google Scholar 

  6. J. Anderson, S. Mohan, Sequential coding algorithms: a survey and cost analysis. IEEE Trans. Commun. 32, 169–176 (1984)

    Article  Google Scholar 

  7. M.V. Eyuboglu, S.U.H. Qureshi, Reduced-state sequence estimation with set partitioning and decision feedback. IEEE Trans. Commun. COM-36, 13–20 (1988)

    Article  Google Scholar 

  8. A. Duel-Hallen, C. Heegard, Delayed decision-feedback sequence estimation. IEEE Trans. Commun. COM-37, 428–436 (1989)

    Article  Google Scholar 

  9. K. Balachandran, J.B. Anderson, Reduced complexity sequence detection for nonminimum phase intersymbol interference channels. IEEE Trans. Inf. Theory 43, 275–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Hafeez, W.E. Stark, Decision feedback sequence estimation for unwhitened ISI channels with applications to multiuser detection. IEEE J. Select. Areas Commun. JSAC-16, 1785–1795 (1998)

    Article  Google Scholar 

  11. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo-codes, in Proceedings of ICC ’93, vol. 2 (1993), pp. 1064–1070

    Google Scholar 

  12. C. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, A. Glavieux, Iterative correction of intersymbol interference: turbo-equalization. Eur. Trans. Telecommun. 6, 507–511 (1995)

    Article  Google Scholar 

  13. M. Rodrigues, I. Darwazeh, A spectrally efficient frequency division multiplexing based communication system. In: 8th International OFDM-Workshop, Hamburg, Germany, pp. 70–74 (2003)

    Google Scholar 

  14. F. Rusek, J.B. Anderson, The two dimensional Mazo limit, in Proceedings of ISIT ’05 (2005), pp. 970–974

    Google Scholar 

  15. P. Banelli, S. Buzzi, G. Colavolpe, A. Modenini, F. Rusek, A. Ugolini, Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Process. Mag. 31, 80–93 (2014)

    Article  Google Scholar 

  16. A. Modenini, F. Rusek, G. Colavolpe, Faster-than-Nyquist signaling for next generation communication architectures, in 2014 Proc. 22nd Europ. Signal Proc. Conf. (EUSIPCO) (2014), pp. 1856–1860

    Google Scholar 

  17. M. Secondini, T. Foggi, F. Fresi, G. Meloni, F. Cavaliere, G. Colavolpe, E. Forestieri, L. Poti, R. Sabella, G. Prati, Optical time-frequency packing: principles, design, implementation, and experimental demonstration. J. Lightwave Technol. 33 (17), 3558–3570 (2015)

    Article  Google Scholar 

  18. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2000)

    MATH  Google Scholar 

  19. A.D. Liveris, C.N. Georghiades, Exploiting faster-than-Nyquist signaling. IEEE Trans. Commun. 51, 1502–1511 (2003)

    Article  Google Scholar 

  20. J.E. Mazo, H.J. Landau, On the minimum distance problem for faster-than-Nyquist signaling. IEEE Trans. Inf. Theory IT-34, 1420–1427 (1988)

    Article  Google Scholar 

  21. D. Hajela, On computing the minimum distance for faster than Nyquist signaling. IEEE Trans. Inf. Theory IT-36, 289–295 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.D. Forney, Lower bounds on error probability in the presence of large intersymbol interference. IEEE Trans. Commun. COM-20, 76–77 (1972)

    Article  Google Scholar 

  23. F. Rusek, J.B. Anderson, Non binary and precoded faster than Nyquist signaling. IEEE Trans. Commun. 56, 808–817 (2008)

    Article  Google Scholar 

  24. A. Prlja, J.B. Anderson, F. Rusek, Receivers for faster-than-Nyquist signaling with and without turbo equalization, in Proc. IEEE Int. Symp. Inf. Theory (2008), pp. 464–468

    Google Scholar 

  25. A. Barbieri, D. Fertonani, G. Colavolpe, Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes. IEEE Trans. Commun. COM-57, 2951–2959 (2009)

    Article  Google Scholar 

  26. L.R. Bahl, J. Cocke, F. Jeinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory 20, 284–287 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.J.D. Kim, J. Bajcsy, An architecture for faster than Nyquist turbo broadcasting, in Proc. 7th Int. Symp. on Turbo Codes and Iterative Inform. (2012), pp. 170–174

    Google Scholar 

  28. F. Rusek, J.B. Anderson, Serial and parallel concatenations based on faster than Nyquist signaling, in Proceedings of ISIT ’06 (2006), pp. 1993–1997

    Google Scholar 

  29. G. Colavolpe, A. Barbieri, On MAP symbol detection for ISI channels using the Ungerboeck observation model. IEEE Commun. Lett. 9, 720–722 (2005)

    Article  Google Scholar 

  30. J. Yu, J. Park, F. Rusek, B. Kudryashov, I. Bocharova, High order modulation in faster-than-Nyquist signaling communication systems, in Proceedings of 2014 IEEE Vehicular Technology Conference (VTC Fall) (2014), pp. 1–5

    Google Scholar 

  31. S. Sugiura, L. Hanzo, Frequency-domain-equalization-aided iterative detection of faster-than-Nyquist signaling. IEEE Trans. Veh. Technol. 64, 2122–2128 (2015)

    Article  Google Scholar 

  32. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  33. F. Rusek, J.B. Anderson, Constrained capacities for faster-than-Nyquist signaling. IEEE Trans. Inf. Theory 55, 764–775 (2009)

    Article  MathSciNet  Google Scholar 

  34. A.D. Liveris, On Distributed Coding, Quantization of Channel Measurements and Faster-than-Nyquist Signaling, Ph.D. thesis, Texas A&M University, 2004

    Google Scholar 

  35. J. Zhou, D. Li, X. Wang, Generalized faster-than-Nyquist signaling, in IEEE Int. Symp. Inform. Theory (2012), pp. 1–5

    Google Scholar 

  36. Y.G. Yoo, J.H. Cho, Asymptotic optimality of binary faster-than-Nyquist signaling. IEEE Commun. Lett. 14, 788–790 (2010)

    Article  Google Scholar 

  37. B. Farhang-Boroujeny, OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28, 92–112 (2011)

    Article  Google Scholar 

  38. I. Kanaras, A. Chorti, M.R.D. Rodrigues, I. Darwazeh, Spectrally efficient FDM signals: bandwidth gain at the expense of receiver complexity, in IEEE Int. Conf. Commun. (ICC) (2009), pp. 1–6

    Google Scholar 

  39. J.B. Anderson, F. Rusek, V. Owall, Faster-than-Nyquist signaling. Proc. IEEE 101, 1817–1830 (2013)

    Article  Google Scholar 

  40. G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, M. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, F. Wiedmann, 5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52, 97–105 (2014)

    Article  Google Scholar 

  41. T. Xu, I. Darwazeh, Spectrally efficient FDM: spectrum saving technique for 5G?, in Int. Conf. 5G for Ubiquitous Connectivity (5GU) (2014), pp. 273–278

    Google Scholar 

  42. F. Rusek, On the existence of the Mazo-limit on MIMO channels. IEEE Trans. Wirel. Commun. 8, 1118–1121 (2009)

    Article  Google Scholar 

  43. Y.J.D. Kim, J. Bajcsy, Faster than Nyquist broadcast signaling, in Proc. 26th Bienn. Symp. Commun., Kingston (2012), pp. 186–189

    Google Scholar 

  44. M.J. Abdoli, M. Jia, Trellis decoding for multi-user faster-than-Nyquist transmission, in IEEE Veh. Tech. Conf. (VTC Fall) (2014), pp. 1–5

    Google Scholar 

  45. Y. Feng, J. Bajcsy, On faster-than-Nyquist transmission over a Multiple-Access Channel, in IEEE Mil. Commun. Conf. (MILCOM) (2014), pp. 824–829

    Google Scholar 

  46. Y. Feng, J. Bajcsy, Improving throughput of faster-than-Nyquist signaling over Multiple-Access Channels, in IEEE Veh. Tech. Conf. (VTC Spring) (2015), pp. 1–5

    Google Scholar 

  47. P.N. Whatmough, M.R. Perrett, S. Isam, I. Darwazeh, VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 1107–1118 (2012)

    Article  MathSciNet  Google Scholar 

  48. C. Le, M. Schellmann, M. Fuhrwerk, J. Peissig, On the practical benefits of faster-than-Nyquist signaling, in Int. Conf. Advanced Techn. for Commun. (ATC) (2014), pp. 208–213

    Google Scholar 

Download references

Acknowledgements

The authors would like to thankfully acknowledge support from Texas Instruments for their original work on faster-than-Nyquist signaling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos D. Liveris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liveris, A.D., Georghiades, C.N. (2017). Fundamentals of Faster-than-Nyquist Signaling. In: Xiang, W., Zheng, K., Shen, X. (eds) 5G Mobile Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-34208-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34208-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34206-1

  • Online ISBN: 978-3-319-34208-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics