Skip to main content

Regulated tRNA Cleavage in Biology and Medicine: Roles of tRNA Modifications

  • Chapter
  • First Online:
Modified Nucleic Acids in Biology and Medicine

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Transfer RNAs (tRNAs) play a key role in translating genomic information and regulating gene expression. tRNA cleavage is an evolutionarily conserved phenomenon serving versatile functions in different organisms. The size distribution and abundance of tRNA-derived fragments suggests that tRNA modifications play important roles in mechanisms that regulate tRNA cleavage and degradation. Here, we discuss the importance of posttranscriptional modifications in controlling processing of tRNAs and describe the functions of tRNA-derived fragments in cell physiology and pathophysiology.

Shawn M. Lyons and Marta M. Fay are equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi-Moheb L, Mertel S, Gonsior M et al (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet 90:847–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe T, Inokuchi H, Yamada Y et al (2014) tRNADB-CE: tRNA gene database well-timed in the era of big sequence data. Front Genet 5:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov A, Chernyakov I, Gu W et al (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21:87–96

    Article  CAS  PubMed  Google Scholar 

  • Amitsur M, Levitz R, Kaufmann G (1987) Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. EMBO J 6:2499–2503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amitsur M, Morad I, Kaufmann G (1989) In vitro reconstitution of anticodon nuclease from components encoded by phage T4 and Escherichia coli CTr5X. EMBO J 8:2411–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amitsur M, Morad I, Chapman-Shimshoni D et al (1992) HSD restriction-modification proteins partake in latent anticodon nuclease. EMBO J 11:3129–3134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amitsur M, Benjamin S, Rosner R et al (2003) Bacteriophage T4-encoded Stp can be replaced as activator of anticodon nuclease by a normal host cell metabolite. Mol Microbiol 50:129–143

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson P, Ivanov P (2014) tRNA fragments in human health and disease. FEBS Lett 588:4297–4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    Article  CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N (2009) Stress granules. Curr Biol 19:R397–398

    Article  CAS  PubMed  Google Scholar 

  • Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870

    Article  CAS  PubMed  Google Scholar 

  • Babiarz JE, Ruby JG, Wang Y et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley U, Dyavaiah M, Patil A et al (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Mol Cell 28:860–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco S, Dietmann S, Flores JV et al (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 33:202–2039

    Article  CAS  Google Scholar 

  • Borek E, Baliga BS, Gehrke CW et al (1977) High turnover rate of transfer RNA in tumor tissue. Cancer Res 37:3362–3366

    CAS  PubMed  Google Scholar 

  • Cai WM, Chionh YH, Hia F et al (2015) A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. Methods Enzymol 560:29–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Buchanan SK, Duche D et al (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty AK, Subbotin R, Chait BT et al (2012) RNA ligase RtcB splices 3′-phosphate and 5′-OH ends via covalent RtcB-(histidinyl)-GMP and polynucleotide-(3′)pp(5′)G intermediates. Proc Natl Acad Sci U S A 109:6072–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–97

    Article  CAS  PubMed  Google Scholar 

  • Chan CT, Pang YL, Deng W et al (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3:37

    Article  CAS  Google Scholar 

  • Cho S, Beintema JJ, Zhang J (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85:08–220

    Article  CAS  Google Scholar 

  • Cole C, Sobala A, Lu C et al (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15:2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozen AE, Quartley E, Holmes AD et al (2015) ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 12:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech A, Wende S, Morl M et al (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9, e1003767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das AT, Klaver B, Berkhout B (1995) Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNA(3Lys). J Virol 69:3090–3097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai KK, Cheng CL, Bingman CA et al (2014) A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res 42:3931–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande RA, Shankar V (2002) Ribonucleases from T2 family. Crit Rev Microbiol 28:79–122

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Baird TD, Zhou D et al (2010) Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem 285:33165–33174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhahbi JM, Spindler SR, Atamna H et al (2013) 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics 14:298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly N, Gorman AM, Gupta S et al (2013) The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci 70:3493–3511

    Article  CAS  PubMed  Google Scholar 

  • Durdevic Z, Schaefer M (2013) tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress? Bioessays 35:323–327

    Article  CAS  PubMed  Google Scholar 

  • El Yacoubi B, Bailly M, de Crecy-Lagard V (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Ann Rev Genet 46:69–95

    Article  PubMed  CAS  Google Scholar 

  • Emara MM, Ivanov P, Hickman T et al (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285:10959–10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fett JW, Strydom DJ, Lobb RR et al (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Feng J, Liu Q et al (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583:437–442

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Xu Z (2008) Mechanisms of action of angiogenin. Acta Biochim Biophys Sinica 40:619–624

    Article  CAS  Google Scholar 

  • Gebetsberger J, Polacek N (2013) Slicing tRNAs to boost functional ncRNA diversity. RNA Biol 10:1798–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebetsberger J, Zywicki M, Kunzi A et al (2012) tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea 2012:260909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giege R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Greenway MJ, Alexander MD, Ennis S et al (2004) A novel candidate region for ALS on chromosome 14q11.2. Neurology 63:1936–1938

    Article  CAS  PubMed  Google Scholar 

  • Greenway MJ, Andersen PM, Russ C et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Begley TJ, Dedon PC (2014) tRNA modifications regulate translation during cellular stress. FEBS Lett 588:4287–4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haiser HJ, Karginov FV, Hannon GJ et al (2008) Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 36:732–741

    Article  CAS  PubMed  Google Scholar 

  • Hanada T, Weitzer S, Mair B et al (2013) CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Kunz M, Kostlin S et al (1999) Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. Cancer Res 59:1578–1583

    CAS  PubMed  Google Scholar 

  • Haussecker D, Huang Y, Lau A et al (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16:673–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov P, Anderson P (2011) Stress-induced ribonucleases. In: Nicholson AW (ed) Ribonucleases, nucleic acids and molecular biology. Springer, Berlin, pp 115–119

    Google Scholar 

  • Ivanov P, Anderson P (2013) Post-transcriptional regulatory networks in immunity. Immunol Rev 253:253–272

    Article  PubMed  CAS  Google Scholar 

  • Ivanov P, Emara MM, Villen J et al (2011a) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43:613–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov P, Kedersha N, Anderson P (2011b) Stress puts TIA on TOP. Genes Dev 25:2119–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov P, O’Day E, Emara MM et al (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111:18201–18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonowski D, Schaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Meidler R, Amitsur M et al (2001) Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base. J Mol Biol 305:377–388

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Blanga S, Amitsur M et al (2002) Structural features of tRNALys favored by anticodon nuclease as inferred from reactivities of anticodon stem and loop substrate analogs. J Biol Chem 277:3836–3841

    Article  CAS  PubMed  Google Scholar 

  • Jochl C, Rederstorff M, Hertel J et al (2008) Small ncRNA transcriptome analysis from Aspergillus fumigatus suggests a novel mechanism for regulation of protein synthesis. Nucleic Acids Res 36:2677–2689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kao RY, Jenkins JL, Olson KA et al (2002) A small-molecule inhibitor of the ribonucleolytic activity of human angiogenin that possesses antitumor activity. Proc Natl Acad Sci U S A 99:10066–10071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaca E, Weitzer S, Pehlivan D et al (2014) Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157:636–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann G (2000) Anticodon nucleases. Trends Biochem Sci 25:70–74

    Article  CAS  PubMed  Google Scholar 

  • Kawaji H, Nakamura M, Takahashi Y et al (2008) Hidden layers of human small RNAs. BMC Genomics 9:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38:494–506

    Article  CAS  PubMed  Google Scholar 

  • Keppetipola N, Jain R, Meineke B et al (2009) Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease. RNA 15:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Rafiq MA, Noor A et al (2012) Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet 90:856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16:98–112

    Article  CAS  PubMed  Google Scholar 

  • Klungland A, Dahl JA (2014) Dynamic RNA modifications in disease. Curr Opin Genet Dev 26:47–52

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Collins K (2005) Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J Biol Chem 280:42744–42749

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Shibata Y, Malhotra A et al (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23:2639–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitz R, Chapman D, Amitsur M et al (1990) The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J 9:1383–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Hu GF (2012) Emerging role of angiogenin in stress response and cell survival under adverse conditions. J Cell Physiol 227:2822–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Luo J, Zhou H et al (2008) Stress-induced tRNA-derived RNAs: a novel class of small RNAs in the primitive eukaryote Giardia lamblia. Nucleic Acids Res 36:6048–6055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ender C, Meister G et al (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40:6787–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JY, Ma LM, Guo YH et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 5, e10563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Esberg A, Huang B et al (2008) Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res 36:1072–1080

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Filonov GS, Noto JJ et al (2015) Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21:1554–1565

    Article  CAS  PubMed  Google Scholar 

  • Luhtala N, Parker R (2010) T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci 35:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machnicka MA, Milanowska K, Osman Oglou O et al (2013) MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 41:D262–267

    Article  CAS  PubMed  Google Scholar 

  • Machnicka MA, Olchowik A, Grosjean H et al (2014) Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol 11:1619–1629

    Article  PubMed  Google Scholar 

  • Mair B, Popow J, Mechtler K et al (2013) Intron excision from precursor tRNA molecules in mammalian cells requires ATP hydrolysis and phosphorylation of tRNA-splicing endonuclease components. Biochem Soc Trans 41:831–837

    Article  CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Jalava SE, Dits NF et al (2012) Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 31:978–991

    Article  CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Olvedy M, Jenster G (2013) Beyond microRNA–novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 340:201–211

    Article  CAS  PubMed  Google Scholar 

  • Martinez FJ, Lee JH, Lee JE et al (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet 49:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D, and related cytotoxic tRNases. Biochimie 84:433–438

    Article  CAS  PubMed  Google Scholar 

  • Masaki H, Ogawa T, Tomita K et al (1997) Colicin E5 as a new type of cytotoxin, which cleaves a specific group of tRNAs. Nucleic Acids Symp Ser 37:287–288

    CAS  PubMed  Google Scholar 

  • Maute RL, Schneider C, Sumazin P et al (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A 110:1404–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Yong J, Liu H et al (2010) tRNA binds to cytochrome c and inhibits caspase activation. Mol Cell 37:668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishima E, Inoue C, Saigusa D et al (2014) Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 25:2316–2326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mleczko AM, Celichowski P, Bakowska-Zywicka K (2014) Ex-translational function of tRNAs and their fragments in cancer. Acta Biochim Pol 61:211–216

    PubMed  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Yamabe H, Osawa H et al (2006) Hypoxic conditions stimulate the production of angiogenin and vascular endothelial growth factor by human renal proximal tubular epithelial cells in culture. Nephrol Dial Transplant 21:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Ng CL, Lang K, Meenan NA et al (2010) Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol 17:1241–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Inoue S, Yajima S et al (2006) Sequence-specific recognition of colicin E5, a tRNA-targeting ribonuclease. Nucleic Acids Res 34:6065–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson KA, French TC, Vallee BL et al (1994) A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res 54:4576–4579

    CAS  PubMed  Google Scholar 

  • Olson KA, Fett JW, French TC et al (1995) Angiogenin antagonists prevent tumor growth in vivo. Proc Natl Acad Sci U S A 92:442–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson KA, Verselis SJ, Fett JW (1998) Angiogenin is regulated in vivo as an acute phase protein. Biochem Biophys Res Commun 242:480–483

    Article  CAS  PubMed  Google Scholar 

  • Parisien M, Wang X, Pan T (2013) Diversity of human tRNA genes from the 1000-genomes project. RNA Biol 10:1853–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil A, Chan CT, Dyavaiah M et al (2012a) Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. RNA Biol 9:990–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil A, Dyavaiah M, Joseph F et al (2012b) Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response. Cell Cycle 11:3656–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paushkin SV, Patel M, Furia BS et al (2004) Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117:311–321

    Article  CAS  PubMed  Google Scholar 

  • Pavon-Eternod M, Gomes S, Geslain R et al (2009) tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37:7268–7280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavon-Eternod M, Gomes S, Rosner MR et al (2013) Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19:461–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestova TV, Kolupaeva VG, Lomakin IB et al (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci U S A 98:7029–7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phizicky EM, Alfonzo JD (2010) Do all modifications benefit all tRNAs? FEBS Lett 584:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24:1832–1860

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzo E, Sarcinelli C, Sheng J et al (2013) Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci 126:4308–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popow J, Englert M, Weitzer S et al (2011) HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331:760–764

    Article  CAS  PubMed  Google Scholar 

  • Popow J, Jurkin J, Schleiffer A et al (2014) Analysis of orthologous groups reveals archease and DDX1 as tRNA splicing factors. Nature 511:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina M, Ibba M (2014) tRNAs as regulators of biological processes. Front Genet 5:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rezgui VA, Tyagi K, Ranjan N et al (2013) tRNA tKUUU, tQUUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 110:12289–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia M, Fu Y, Pavon-Eternod M et al (2010) Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16:1317–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia M, Krokowski D, Guan BJ et al (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287:42708–42725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia M, Jobava R, Parisien M et al (2014) Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34:2450–2463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarin LP, Leidel SA (2014) Modify or die?—RNA modification defects in metazoans. RNA Biol 11:1555–1567

    Article  PubMed  Google Scholar 

  • Schaefer M, Pollex T, Hanna K et al (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24:1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer AE, Eggens VR, Caglayan AO et al (2014) CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutz K, Hesselberth JR, Fields S (2010) Capture and sequence analysis of RNAs with terminal 2′,3′-cyclic phosphates. RNA 16:621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigematsu M, Kirino Y (2015) tRNA-derived short non-coding RNA as interacting partners of argonaute proteins. Gene Regul Syst Biol 9:27–33

    Google Scholar 

  • Sobala A, Hutvagner G (2011) Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2:853–862

    Article  CAS  PubMed  Google Scholar 

  • Sobala A, Hutvagner G (2013) Small RNAs derived from the 5′ end of tRNA can inhibit protein translation in human cells. RNA Biol 10:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 33:D139–140

    Article  CAS  PubMed  Google Scholar 

  • Su D, Chan CT, Gu C et al (2014) Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc 9:828–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayana T, Uppala JK, Garapati UK (2012) Interaction of cytochrome c with tRNA and other polynucleotides. Mol Biol Rep 39:9187–9191

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Nagao A, Suzuki T (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Meineke B, Shuman S (2011) RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J Biol Chem 286:30253–30257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavtigian SV, Simard J, Teng DH et al (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180

    Article  CAS  PubMed  Google Scholar 

  • Tello-Montoliu A, Patel JV, Lip GY (2006) Angiogenin: a review of the pathophysiology and potential clinical applications. J Thromb Haemost 4:1864–1874

    Article  CAS  PubMed  Google Scholar 

  • Thompson DM, Parker R (2009a) The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DM, Parker R (2009b) Stressing out over tRNA cleavage. Cell 138:215–219

    Article  CAS  PubMed  Google Scholar 

  • Thompson DM, Lu C, Green PJ et al (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji T, Sun Y, Kishimoto K et al (2005) Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 65:1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Tuorto F, Liebers R, Musch T et al (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905

    Article  CAS  PubMed  Google Scholar 

  • Tyndall C, Meister J, Bickle TA (1994) The Escherichia coli prr region encodes a functional type IC DNA restriction system closely integrated with an anticodon nuclease gene. J Mol Biol 237:266–274

    Article  CAS  PubMed  Google Scholar 

  • van Es MA, Schelhaas HJ, van Vught PW et al (2011) Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 70:964–973

    Article  PubMed  CAS  Google Scholar 

  • Wang X, He C (2014) Dynamic RNA modifications in posttranscriptional regulation. Mol Cell 56:5–12

    Article  CAS  PubMed  Google Scholar 

  • Weitzer S, Martinez J (2007) The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447:222–226

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Yu W, Kishikawa H et al (2007) Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann Neurol 62:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Steitz TA (2006) A story with a good ending: tRNA 3′-end maturation by CCA-adding enzymes. Curr Opin Struct Biol 16:12–17

    Article  CAS  PubMed  Google Scholar 

  • Xu ZP, Tsuji T, Riordan JF, Hu GF (2002) The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 294:287–292

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Ivanov P, Hu GF et al (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung ML, Bennasser Y, Watashi K et al (2009) Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 37:6575–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Qin Y, Clark WC et al (2015) Efficient and quantitative high-throughput tRNA sequencing. Nat Meth 12:835–837

    Article  CAS  Google Scholar 

  • Zhou Y, Goodenbour JM, Godley LA et al (2009) High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem Biophys Res Commun 385:160–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lyons, S.M., Fay, M.M., Ivanov, P. (2016). Regulated tRNA Cleavage in Biology and Medicine: Roles of tRNA Modifications. In: Jurga, S., Erdmann (Deceased), V., Barciszewski, J. (eds) Modified Nucleic Acids in Biology and Medicine. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-34175-0_2

Download citation

Publish with us

Policies and ethics