Skip to main content

Animal Studies in the Field of Transcranial Electric Stimulation

  • Chapter
  • First Online:
Transcranial Direct Current Stimulation in Neuropsychiatric Disorders

Abstract

Dozens of animal studies of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) have provided insight into the cellular mechanism of stimulation. Biomarkers of tDCS/tACS responses at the neurophysiological, behavioral, and molecular levels provide a basis to design clinical interventions that engage specific targets. This chapter provides a broad introduction to methods and insights from animal models. Both tDCS and tACS are sub-threshold techniques, producing membrane polarization rather than firing. If the nervous system is engaged during tDCS/tACS, for example by cognitive behavioral therapy, then tDCS/tACS modulate this ongoing activity. Animal models have supported the basis for polarity-specific effects of tDCS (“anodal” excitation, “cathodal” inhibition) while also indicating limitations of simplistic dose strategies. tACS studies have focused on boosting of oscillations. Both techniques can modulate ongoing plasticity leading to lasting changes in brain function. As an adjunct therapy, tDCS/tACS may thus increase brain capacity for plasticity enhancing the effects of neuropsychiatric therapies, and compensating for disease-related decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolzoni F, Baczyk M, Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. J Physiol. 2013;591:4027–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci. 2010;31:704–9.

    Article  PubMed  Google Scholar 

  3. Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 2006;47:1216–24.

    Article  PubMed  Google Scholar 

  4. Yoon KJ, Oh BM, Kim DY. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 2012;1452:61–72.

    Article  CAS  PubMed  Google Scholar 

  5. Bolzoni F, Pettersson LG, Jankowska E. Evidence for long-lasting subcortical facilitation by transcranial direct current stimulation in the cat. J Physiol. 2013;591:3381–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marquez-Ruiz J, Leal-Campanario R, Sanchez-Campusano R, Molaee-Ardekani B, Wendling F, Miranda PC, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci. 2012;109(17):6710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, et al. Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci. 2010;30:11476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  CAS  PubMed  Google Scholar 

  10. Merrill DR, Bikson M, Jefferys JGR. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141:171–98.

    Article  PubMed  Google Scholar 

  11. Redfearn JW, Lippold OC, Costain R. A preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. Br J Psychiatry. 1964;110:773–85.

    Article  CAS  PubMed  Google Scholar 

  12. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005;568:653–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Durand DM, Bikson M. Suppression and control of epileptiform activity by electrical stimulation: a review. Proc IEEE. 2001;89:1065–82.

    Article  Google Scholar 

  14. Gluckman BJ, Neel EJ, Netoff TI, Ditto WL, Spano ML, Schiff SJ. Electric field suppression of epileptiform activity in hippocampal slices. J Neurophysiol. 1996;76:4202–5.

    CAS  PubMed  Google Scholar 

  15. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jefferys JG. Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices. J Physiol. 1981;319:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deans JK, Powell AD, Jefferys JG. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol. 2007;583:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez-Quintero SV, Datta A, Amaya R, Elwassif M, Bikson M, Tarbell JM. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers. J Neural Eng. 2010;7:16005.

    Article  CAS  PubMed  Google Scholar 

  19. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988;402:751–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan CY, Nicholson C. Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol. 1986;371:89–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W, Lisanby SH, et al. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 2012;5:435–53.

    Article  PubMed  Google Scholar 

  22. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miranda PC, Correia L, Salvador R, Basser PJ. The role of tissue heterogeneity in neural stimulation by applied electric fields. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:1715–8.

    PubMed  Google Scholar 

  24. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117:1623–9.

    Article  PubMed  Google Scholar 

  25. Sadleir RJ, Vannorsdall TD, Schretlen DJ, Gordon B. Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage. 2010;51:1310–8.

    Article  PubMed  Google Scholar 

  26. Lopes S, Davies N, Toumazou C, Grossman N. Theoretical investigation of transcranial alternating current stimulation using laminar model. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4152–5.

    CAS  PubMed  Google Scholar 

  27. Bikson M, Dmochowski J, Rahman A. The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation. Brain Stimul. 2012.

    Google Scholar 

  28. Bikson M, Reato D, Rahman A. Cellular and Network Effects of Transcranial Direct Current Stimulation: Insights from Animal Models and Brain Slice. In: Miniussi C, Paulus W, Rossini PM, editors. Transcranial brain stimulation. 1st ed. New York, NY: CRC Press; 2012.

    Google Scholar 

  29. Gasca F, Richter L, Schweikard A. Simulation of a conductive shield plate for the focalization of transcranial magnetic stimulation in the rat. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1593–6.

    PubMed  Google Scholar 

  30. Brunoni AR, Fregni F, Pagano RL. Translational research in transcranial direct current stimulation (tDCS): a systematic review of studies in animals. Rev Neurosci. 2011;22:471–81.

    Article  PubMed  Google Scholar 

  31. Bikson M, Datta A, Rahman A, Scaturro J. Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol. 2010;121:1976–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009;120:1033–4.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kronberg G, Bikson M. Electrode assembly design for transcranial direct current stimulation: a FEM modeling study. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:891–5.

    PubMed  Google Scholar 

  34. Minhas P, Datta A, Bikson M. Cutaneous perception during tDCS: role of electrode shape and sponge salinity. Clin Neurophysiol. 2011;122:637–8.

    Article  PubMed  Google Scholar 

  35. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995;684:206–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Francis JT, Gluckman BJ, Schiff SJ. Sensitivity of neurons to weak electric fields. J Neurosci. 2003;23:7255–61.

    CAS  PubMed  Google Scholar 

  38. Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci. 2010;30:15067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jefferys JGR, Deans J, Bikson M, Fox J. Effects of weak electric fields on the activity of neurons and neuronal networks. Radiat Prot Dosimetry. 2003;106:321–3.

    Article  CAS  PubMed  Google Scholar 

  41. Ekici B. Transcranial direct current stimulation-inducted seizure: analysis of a case. Clin EEG Neurosci. 2015;46:169.

    Article  PubMed  Google Scholar 

  42. Alexander JK, Fuss B, Colello RJ. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2006;2:93–103.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li L, El-Hayek YH, Liu B, Chen Y, Gomez E, Wu X, et al. Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem Cells. 2008;26:2193–200.

    Article  CAS  PubMed  Google Scholar 

  44. Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120:1161–7.

    Article  PubMed  Google Scholar 

  45. Sunderam S, Gluckman B, Reato D, Bikson M. Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy Behav. 2010;17:6–22.

    Article  PubMed  Google Scholar 

  46. Abd Hamid AI, Gall C, Speck O, Antal A, Sabel BA. Effects of alternating current stimulation on the healthy and diseased brain. Front Neurosci. 2015;9:391.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrman CS. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014;24:333–9.

    Article  CAS  PubMed  Google Scholar 

  48. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3.

    Article  CAS  PubMed  Google Scholar 

  49. Marshall L, Molle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24:9985–92.

    Article  CAS  PubMed  Google Scholar 

  50. Mueller NG, Vellage AK, Heinze HJ, Zaehle T. Entrainment of human alpha oscillations selectively enhances visual conjunction search. PLoS One. 2015;10, e0143533.

    Article  CAS  Google Scholar 

  51. Schmidt SL, Iyengar AK, Foulser AA, Boyle MR, Frohlich F. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimul. 2014;7:878–89.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1:97–105.

    Article  PubMed  Google Scholar 

  53. Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hamada M, Galea JM, Lazzaro VD, Mazzone P, Ziemann U, Rothwell JC. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci. 2014;34:12837–49.

    Article  CAS  PubMed  Google Scholar 

  55. Reato D, Bikson M, Parra LC. Lasting modulation of in vitro oscillatory activity with weak direct current stimulation. J Neurophysiol. 2015;113:1334–41.

    Article  PubMed  Google Scholar 

  56. Datta A, Elwassif M, Bikson M. Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:670–3.

    PubMed  Google Scholar 

  57. Andreasen M, Nedergaard S. Dendritic electrogenesis in rat hippocampal CA1 pyramidal neurons: functional aspects of Na + and Ca2+ currents in apical dendrites. Hippocampus. 1996;6:79–95.

    Article  CAS  PubMed  Google Scholar 

  58. Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2009;2:215–28.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Radman T, Su YZ, An JH, Parra LC, Bikson M. Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J Neurosci. 2007;27:3030–6.

    Article  CAS  PubMed  Google Scholar 

  60. Fritsch GT, Hitzig E. On the electrical excitability of the cerebrum. In: Von Bonin G (1960) trans. Some papers on the cerebral cortex. 1870.

    Google Scholar 

  61. Terzuolo CA, Bullock TH. Measurement of Imposed Voltage Gradient Adequate to Modulate Neuronal Firing. Proc Natl Acad Sci U S A. 1956;42:687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196:584–5.

    Article  CAS  PubMed  Google Scholar 

  63. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166:23–30.

    Article  PubMed  Google Scholar 

  64. Brunoni AR, Sampaio-Junior B, Moffa AH, Borrione L, Nogueria BS, Aparicio LV, et al. The escitalopram versus electric current therapy for treating depression clinical study (ELECT-TDCS): rationale and study design of a non-inferiority triple-arm, placebo-controlled clinical trial. Sao Paulo Med J. 2015;133:252–63.

    Article  PubMed  Google Scholar 

  65. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2012;5:175–95.

    Article  PubMed  Google Scholar 

  66. Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):1987–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fresnoza S, Paulus W, Nitsche MA, Kuo MF. Nonlinear dose-dependent impact of D1 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34:2744–53.

    Article  CAS  PubMed  Google Scholar 

  68. Svirskis G, Gutman A, Hounsgaard J. Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. J Neurophysiol. 1997;77:579–86.

    CAS  PubMed  Google Scholar 

  69. Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67:129–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Joucla S, Yvert B. The “mirror” estimate: an intuitive predictor of membrane polarization during extracellular stimulation. Biophys J. 2009;96:3495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance? Nature. 1968;220:382–3.

    Article  CAS  PubMed  Google Scholar 

  72. Gartside IB. Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: role of protein synthesis. Nature. 1968;220:383–4.

    Article  CAS  PubMed  Google Scholar 

  73. Costain R, Redfearn JW, Lippold OC. A controlled trial of the therapeutic effect of polarization of the brain in depressive illness. Br J Psychiatry. 1964;110:786–99.

    Article  CAS  PubMed  Google Scholar 

  74. Nitsche MA, Paulus W (2000) Excitability changes in the human motor cortex by weak tDCS. J Physiol 633–9.

    Google Scholar 

  75. Nitsche MA, Schauenberg A, Lang N, Liebetanz D, Exner C, Paulus W, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15:619–26.

    Article  PubMed  Google Scholar 

  76. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hess G, Donoghue JP. Facilitation of long-term potentiation in layer II/III horizontal connections of rat motor cortex following layer I stimulation: route of effect and cholinergic contributions. Exp Brain Res. 1999;127:279–90.

    Article  CAS  PubMed  Google Scholar 

  78. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1:230–4.

    Article  CAS  PubMed  Google Scholar 

  79. Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010;1349:76–89.

    Article  CAS  PubMed  Google Scholar 

  80. Artola A, Brocher S, Singer W. Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature. 1990;347:69–72.

    Article  CAS  PubMed  Google Scholar 

  81. Ranieri F, Podda MV, Riccardi E, Frisullo G, Dileone M, Profice P. Modulation of LTP at rat hippocampal Ca3-Ca1 synapses by direct current stimulation. J Neurophysiol. 2012.

    Google Scholar 

  82. Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol. 2013;9, e1002898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mozzachiodi R, Byrne JH. More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends Neurosci. 2010;33:17–26.

    Article  CAS  PubMed  Google Scholar 

  84. Buzsaki G. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus. 2015;25:1073–188.

    Article  PubMed  Google Scholar 

  85. Antal A, Varga ET, Kincses TZ, Nitsche MA, Paulus W. Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport. 2004;15:1307–10.

    Article  PubMed  Google Scholar 

  86. Dubner HH, Gerard RW. Factors controlling brain potentials in the cat. J Neurophysiol. 1939;2:142–52.

    Google Scholar 

  87. Marshall L, Kirov R, Brade J, Molle M, Born J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One. 2011;6, e16905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Varga ET, Terney D, Atkins MD, Nikanorova M, Jeppesen DS, Uldall P, et al. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study. Epilepsy Res. 2011;97:142–5.

    Article  PubMed  Google Scholar 

  89. Cosentino G, Fierro B, Paladino P, Talamanca S, Vigneri S, Palermo A, et al. Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex. Eur J Neurosci. 2012;35:119–24.

    Article  PubMed  Google Scholar 

  90. Fröhlich F. Experiments and models of cortical oscillations as a target for noninvasive brain stimulation. Prog Brain Res. 2015;222:41–73.

    Article  PubMed  Google Scholar 

  91. Riecke L, Formisano E, Herrmann CS, Sack AT. 4-Hz transcranial alternating current stimulation phase modulates hearing. Brain Stimul. 2015;8(4):777–83.

    Article  PubMed  Google Scholar 

  92. Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One. 2010;5, e13766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ali MM, Sellers KK, Frohlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33:11262–75.

    Article  CAS  PubMed  Google Scholar 

  94. Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry. 2014;15:261–75.

    Article  PubMed  Google Scholar 

  95. Tortella G, Casati R, Aparicio LV, Mantovani A, Senco N, D’Urso G, et al. Transcranial direct-current stimulation in psychiatric disorders. World J Psychiatry. 2015;22:88–102.

    Google Scholar 

  96. Sauvaget A, Trojak B, Bulteau S, Jimenez-Murica S, Fernandez-Aranda F, Wolz I, et al. Transcranial direct current stimulation (tDCS) in behavioral and food addiction: a systematic review of efficacy, technical, and methodological issues. Front Neurosci. 2015;9.

    Google Scholar 

  97. den Uyl TE, Gladwin TE, Wiers TW. Transcranial direct current stimulation, implicit alcohol associations and craving. Biol Psychol. 2015;105:37–42.

    Article  Google Scholar 

  98. Ouelle J, McGirr A, Van den Eynde F, Jollant F, Lepage M, Berlim MT. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): a randomized and sham-controlled exploratory study. J Psychiatr Res. 2015;69:27–34.

    Article  Google Scholar 

  99. Gorini A, Lucchiari C, Russell-Edu W, Pravettoni G. Modulation of risky choices in recently abstinent dependent cocaine users: a transcranial direct-current stimulation study. Front Hum Neurosci. 2014.

    Google Scholar 

  100. Jansen JM, Daams JG, Koeter MW, Veltman DJ, van den Brink W, Goudriaan AE. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013;37:2472–80.

    Article  PubMed  Google Scholar 

  101. Feil J, Zangen A. Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev. 2010;34:559–74.

    Article  PubMed  Google Scholar 

  102. Pedron S, Monnin J, Haffen E, Sechter D, Van Waes V. Repeated transcranial direct current stimulation prevents abnormal behaviors associated with abstinence from chronic nicotine consumption. Neuropsychopharmacology. 2014;39:981–8.

    Article  CAS  PubMed  Google Scholar 

  103. Nardone R, Holler Y, Tezzon F, Christova M, Schwenker K, Golaszewski S, et al. Neurostimulation in Alzheimer’s disease: from basic research to clinical applications. Neurol Sci. 2015;36:689–700.

    Article  PubMed  Google Scholar 

  104. Sandrini M, Brambilla M, Manenti R, Rosini S, Cohen LG, Cotelli M. Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Front Aging Neurosci. 2014;6:289.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ferrucci R, Mameli F, Guidi I, Mrakic-Spousta S, Vergari M, Marceglia S, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71(7):493–8.

    Article  CAS  PubMed  Google Scholar 

  106. Cotelli M, Manenti R, Brambilla M, Petesi M, Rosini S, Ferrari C, et al. Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front Aging Neurosci. 2014;6:38.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yu SH, Park SD, Sim KC. The effect of tDCS on cognition and neurologic recovery of rats with Alzheimer’s Disease. J Phys Ther Sci. 2014;26(2):247–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Spezia Adachi LN, Quevedo AS, de Souza A, Scarabelot VL, Rozisky JR, de Oliveira C, et al. Exogenously induced brain activation regulates neuronal activity by top-down modulation: conceptualized model for electric brain stimulation. Exp Brain Res. 2015;233:1377–89.

    Article  CAS  PubMed  Google Scholar 

  109. Dhamne SC, Ekstein D, Zhuo Z, Gersner R, Zurakowski D, Loddenkemper T, et al. Acute seizure suppression by transcranial direct current stimulation in rats. Ann Clin Transl Neurol. 2015;2(8):843–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the primary motor cortex facilitates long-term memory formation reflecting use-dependent plasticity. PLoS One. 2015;10, e0127270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. Neuroimage. 2010;52:1268–78.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Datta A, Elwassif M, Battaglia F, Bikson M. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J Neural Eng. 2008;5:163–74.

    Article  PubMed  Google Scholar 

  113. Fregni F, Liebetanz D, Monte-Silva KK, Oliveira MB, Santos AA, Nitsche MA, et al. Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression. Exp Neurol. 2007;204:462–6.

    Article  PubMed  Google Scholar 

  114. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85.

    CAS  PubMed  Google Scholar 

  115. Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Ripoll Rozisky J, de Souza A. Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res. 2012;1489:17–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marom Bikson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ling, D., Rahman, A., Jackson, M., Bikson, M. (2016). Animal Studies in the Field of Transcranial Electric Stimulation. In: Brunoni, A., Nitsche, M., Loo, C. (eds) Transcranial Direct Current Stimulation in Neuropsychiatric Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-33967-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33967-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33965-8

  • Online ISBN: 978-3-319-33967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics