Skip to main content

Central Nervous System Tumors

  • Chapter
  • First Online:
Cancer in Adolescents and Young Adults

Abstract

CNS tumors are least likely to present during adolescence, when they do, their clinical presentation is enmeshed with the young person’s physical, psychological, educational, and social development. The population incidence of the different tumor types highlights the transition from “childhood type” to “adult type” and identifies those driven by adolescent development itself – intracranial germ cell tumors. While all brain tumors in this age group are undoubtedly a product of brain development, genetic and environmental factors also play a key role and highlight the complexity of tumorigenesis in the brain. Symptomatology is determined by anatomical factors and influence pathways to diagnosis which can be prolonged and are currently the focus of population interventions, seeking to accelerate diagnosis. Awareness of genetic predisposing conditions can contribute to enhanced awareness of risk and complex genetic factors that in the future can be expected to be therapeutic targets. Once diagnosed, the AYA multidisciplinary and multiprofessional teams are in development across health systems, frequently organized differently in pediatric versus adult settings. The neurosurgical options are determined by anatomy and surgical feasibility seeking to maximize resection rates while minimizing neurosurgical toxicity. Acute neurological syndromes of raised intracranial pressure, epilepsy, and acute neurological problems associated with radiotherapy and chemotherapy require an integrated approach to care and rehabilitation. Adjuvant therapies with chemotherapy and radiotherapy are tumor-type-specific and driven by trial programs, which we anticipate to be focused increasingly upon molecularly targeted therapies as they come available, although targeting drug therapies to the brain remains an outstanding challenge to their effectiveness. Intracranial germ cell tumors peak during the AYA age groups and have reached a new level of consensus, regarding all aspects of their care as a result of global research collaboration. Late consequences of childhood brain tumors and AYA tumors are a major challenge for current health systems, as survival rates rise and the neurological, cognitive, endocrine, and psychological consequences of brain tumor color the lives of the adult survivors. Future improvements in outcome are dependent on coordinated research programs seeking to answer questions prioritized by successful public engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gogtay N, Giedd J, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101(21):8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scotting P, Walker D, Perilongo G (2005) Childhood solid tumors: a developmental disorder. Nat Rev Cancer 5:481–488

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM, Kramárová E, Draper GJ, Masuyer E, Michaelis J, Neglia J, Qureshi S, Stiller CA, Kramárová E, Draper GJ (1998) International incidence of childhood cancer, vol 2, IARC Scientific Publications, No 144. International Agency for Research on Cancer, Lyon

    Google Scholar 

  4. World Health Organization (2007) WHO classification of tumors of the central nervous system, vol 1. 4th edn. IARC Publications. IARC WHO Classification of Tumours, Vol 1. Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK. ISBN-13 9789283224303, ISBN-10 9283224302

    Google Scholar 

  5. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: incidence – SEER 9, 13 and 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2014 Sub (2000–2012) <Katrina/Rita Population Adjustment> – Linked To County Attributes – Total U.S., 1969–2013 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released April 2015, based on the November 2014 submission

  6. Bleyer A, O’Leary M, Barr R, Ries L (2006) Cancer epidemiology in older adolescents and young adults 15–29 years of age, including SEER incidence and survival: 1975–2000. National Cancer Institute, Bethesda

    Google Scholar 

  7. Osteom QT, Gittleman H, de Blank PM et al (2016) Adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008–2012, Central Brain Tumor Registry of the United States American Brain Tumor Association Adolescent and Young Adult Brain Tumor Report Statistical Supplement 2016. J Neuro-Oncol 18(1), Supplement 1–150. http://www.cbtrus.org/reports/reports.html. Accessed 28 Jan 2016

  8. Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414

    Article  PubMed  Google Scholar 

  9. Gibson P, Tong Y, Robinson G et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327):1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neglia J, Robison L, Stovall M et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 98(21):1528–1537

    Article  PubMed  Google Scholar 

  11. Taylor A, Little M, Winter D et al (2010) Population-based risks of CNS tumors in survivors of childhood cancer: the British Childhood Cancer Survivor Study. J Clin Oncol 28(36):5287–5293

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mathews J, Forsythe A, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. Br Med J 346:f2360

    Article  Google Scholar 

  14. Krille L, Dreger S, Schindel R et al (2015) Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys 54(1):1–12

    Article  CAS  PubMed  Google Scholar 

  15. Journy N, Rehel J-L, Ducou Le Pointe H et al (2015) Are the studies on cancer risk from CT scans biased by indication? Elements of answer from a large-scale cohort study in France. Br J Cancer 112:185–193

    Article  CAS  PubMed  Google Scholar 

  16. Boice J (2015) Radiation epidemiology and recent paediatric computed tomography studies. Ann ICRP 44(1 Suppl):236–248

    Article  PubMed  Google Scholar 

  17. Spycher B, Lupatsch J, Zwahlen M et al (2015) Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628

    Article  PubMed  PubMed Central  Google Scholar 

  18. Del Risco Kollerud R, Blaasaas K, Claussen B (2014) Risk of leukemia or cancer in the central nervous system among children living in an area with high indoor radon concentrations: results from a cohort study in Norway. Br J Cancer 111:1413–1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hauri D, Spycher B, Huss A et al (2013) Domestic radon exposure and risk of childhood cancer: a prospective census-based cohort study. Environ Health Perspect 121:1239–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kendall G, Little M, Wakeford R et al (2013) A record-based case-control study of natural background radiation and the incidence of childhood leukemia and other cancers in Great Britain during 1980–2006. Leukemia 27:3–9

    Article  CAS  PubMed  Google Scholar 

  21. Raaschou-Nielsen O, Andersen C, Andersen H et al (2008) Domestic radon and childhood cancer in Denmark. Epidemiology 19:536–543

    PubMed  Google Scholar 

  22. Brauner E, Andersen Z, Andersen C et al (2013) Residential radon and brain tumor incidence in a Danish cohort. PLoS ONE 8(9):374435

    Article  CAS  Google Scholar 

  23. Huncharek M, Kupelnick B (2004) A meta-analysis of maternal cured meat consumption during pregnancy and the risk of childhood brain tumors. Neuroepidemiology 23:78–84

    Article  PubMed  Google Scholar 

  24. Huncharek M, Kupelnick B, Wheeler L (2003) Dietary cured meat and the risk of adult glioma: a meta-analysis of nine observational studies. J Environ Pathol Toxicol Oncol 22:129–137

    CAS  PubMed  Google Scholar 

  25. Terry M, Howe G, Pogoda J et al (2009) An international case-control study of adult diet and brain tumor risk: a histology-specific analysis by food group. Ann Epidemiol 19(3):161–171

    Article  PubMed  Google Scholar 

  26. Chen M, Chang C, Tao L, Lu C (2015) Residential exposure to pesticide during childhood and childhood cancers: a meta-analysis. Pediatrics 136:719–729

    Article  PubMed  Google Scholar 

  27. van Maele-Fabry G, Hoet P, Lison D (2013) Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: a systematic review and meta-analysis. Environ Int 56:19–31

    Article  PubMed  CAS  Google Scholar 

  28. Huoi C, Olsson A, Lightfoot T et al (2014) Parental occupational exposure and risk of childhood central nervous system tumors: a pooled analysis of case-control studies from Germany, France and the UK. Cancer Causes Control 25(12):1603–1613

    Article  PubMed  Google Scholar 

  29. Franceschi S, Dal Maso L, La Vecchia C (1999) Advances in the epidemiology of HIV-associated non-Hodgkin’s lymphoma and other lymphoid neoplasms. Int J Cancer 83:481–485

    Article  CAS  PubMed  Google Scholar 

  30. International Collaboration on HIV & Cancer (2000) Highly active anti-retroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J Natl Cancer Inst 92:1823–1830

    Article  Google Scholar 

  31. O’Neill K, Murphy M, Bunch K et al (2015) Infant birthweight and risk of childhood cancer: international population-based case control studies of 40,000 cases. Int J Epidemiol 44(1):153–168

    Article  PubMed  Google Scholar 

  32. Crump C, Sundquist J, Sieh W, Winkleby M, Sundquist K (2015) Perinatal and familial risk factors for brain tumors in childhood through young adulthood. Cancer Res 75:576–583

    Article  CAS  PubMed  Google Scholar 

  33. Kitahara C, Wang S, Melin B et al (2012) Association between adult height, genetic susceptibility and risk of glioma. Int J Epidemiol 41:1075–1085

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sergentanis T, Tsivgoulis G, Perlepe C et al (2015) Obesity and risk for brain/CNS tumors, gliomas and meningiomas: a meta-analysis. PLoS ONE 10(9):e1036974

    Article  CAS  Google Scholar 

  35. Niedermaier T, Behrens G, Schmid D, Schlecht I, Fischer B, Leitzmann M (2015) Body mass index, physical activity and risk of adult meningioma and glioma: a meta-analysis. Neurology 85:1342–1350

    Article  PubMed  Google Scholar 

  36. Johnson K, Cullen J, Barnholtz-Sloan J et al (2014) Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomark Prev 23:2716–2736

    Article  Google Scholar 

  37. Linos E, Raine T, Alonso A, Michaud D (2007) Atopy and risk of brain tumors: a meta-analysis. J Natl Cancer Inst 99:1544–1550

    Article  PubMed  Google Scholar 

  38. Chen C, Xu T, Chen J, Zhou J, Yan Y, Lu Y, Wu S (2011) Allergy and risk of glioma: a meta-analysis. Eur J Neurol 18(3):387–395

    Article  CAS  PubMed  Google Scholar 

  39. Krishnamachari B, Il-yasova D, Scheurer M et al (2015) A pooled multisite analysis of the effects of atopic medical conditions in glioma risk in different ethnic groups. Ann Epidemiol 25(4):270–274

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCarthy B, Rankin K, Aldape K et al (2011) Risk factors for oligodendroglial tumors: a pooled international study. Neuro-Oncology 13(2):242–250

    Article  PubMed  Google Scholar 

  41. Wang M, Chen C, Qu J et al (2011) Inverse association between eczema and meningioma: a meta-analysis. Cancer Causes Control 22:1355–1363

    Article  PubMed  Google Scholar 

  42. Claus E, Calvocoressi L, Bondy M, Schildkraut J, Wiemels J, Wrensch M (2011) Family and personal medical history and risk of meningioma. J Neurosurg 115:1072–1077

    Article  PubMed  PubMed Central  Google Scholar 

  43. Turner M, Krewski D, Armstrong B et al (2013) Allergy and brain tumors in the INTERPHONE study: pooled results from Australia, Canada, France, Israel and New Zealand. Cancer Causes Control 24(5):949–960

    Article  PubMed  Google Scholar 

  44. Kitahara C, Linet M, Brenner A et al (2014) Personal history of diabetes, genetic susceptibility to diabetes, and risk of brain glioma: a pooled analysis of observational studies. Cancer Epidemiol Biomark Prev 23:47–54

    Article  CAS  Google Scholar 

  45. Zhao L, Zheng Z, Huang P (2015) Diabetes mellitus and the risk of glioma: a meta-analysis. Oncotarget. doi:10.18632/oncotarget.6605, Epub ahead of print

    Google Scholar 

  46. Qi Z, Shao C, Zhang X, Hui G, Wang Z (2013) Exogenous and endogenous hormones in relation to glioma in women; a meta-analysis of 11 case-control studies. PLoS ONE 8(7):e68695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krishnamachari B, Il-yasova D, Scheurer M, Bondy M, Wrensch M, Davis F (2014) A pooled multisite analysis of the effects of female reproductive hormones on glioma risk. Cancer Causes Control 25:1007–1013

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mezei G, Gadallah M, Kheifets L (2008) Residential magnetic field exposure and childhood brain cancer: a meta-analysis. Epidemiology 19:424–430

    Article  PubMed  Google Scholar 

  49. Kheifets L, Ahlbom A, Crespi C et al (2010) A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors. Am J Epidemiol 172(7):752–761

    Article  PubMed  PubMed Central  Google Scholar 

  50. Aydin D, Feychting M, Schuz J et al (2011) Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study. J Natl Cancer Inst 103:1264–1276

    Article  PubMed  Google Scholar 

  51. Kheifets L, Monroe J, Vergara X, Mezei G, Afifi A (2008) Occupational electromagnetic fields and leukemia and brain cancer: an update to two meta-analyses. J Occup Environ Med 50:677–688

    Article  PubMed  Google Scholar 

  52. Turner M, Benke G, Bowman J et al (2014) Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC Study. Cancer Epidemiol Biomark Prev 23:1863–1872

    Article  CAS  Google Scholar 

  53. Lagorio S, Roosli M (2014) Mobile phone use and risk of intracranial tumors: a consistency analysis. Bioelectromagnetics 35:79–90

    Article  PubMed  Google Scholar 

  54. Ostrom Q, Bauchet L, Davis F et al (2014) The epidemiology of glioma in adults: a ‘state of the science’ review. Neuro-Oncology 16(7):896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Y, Huang J, Lan H, Zhao G, Huang C-Y (2014) A meta-analysis of parental smoking and the risk of childhood brain tumors. PLoS ONE 9(7):e102910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mandelzweig L, Novikov I, Sadetzki S (2009) Smoking and risk of glioma: a meta-analysis. Cancer Causes Control 20:1927–1938

    Article  PubMed  Google Scholar 

  57. Fan Z, Ji T, Wan S et al (2013) Smoking and risk of meningioma: a meta-analysis. Cancer Epidemiol 37(1):39–45

    Article  PubMed  Google Scholar 

  58. Galeone C, Malerba S, Rota M et al (2013) A meta-analysis of alcohol consumption and the risk of brain tumors. Ann Oncol 24(2):514–523

    Article  CAS  PubMed  Google Scholar 

  59. Malerba S, Galeone C, Pelucchi C et al (2013) A meta-analysis of coffee and tea consumption and the risk of glioma in adults. Cancer Causes Control 24(2):267–276

    Article  PubMed  Google Scholar 

  60. Liu Y, Lu Y, Wang J et al (2014) Association between non steroidal anti-inflammatory drug use and brain tumor risk: a meta-analysis. Br J Clin Pharmacol 78(1):58–68

    Article  CAS  PubMed  Google Scholar 

  61. Engels E, Hormuzd A, Nielsen N et al (2003) Cancer incidence in Denmark following exposure to poliovirus vaccine contaminated with simian virus 40. J Natl Cancer Inst 95(7):532–539

    Article  CAS  PubMed  Google Scholar 

  62. Wiemels J, Wrensch M, Claus E (2010) Epidemiology and etiology of meningioma. J Neuro Oncol 99:307–314

    Article  Google Scholar 

  63. Schlehofer B, Blettner M, Preston-Martin S et al (1999) Role of medical history in brain tumour development. Results from the international adult brain tumour study. Int J Cancer 82:155–160

    Article  CAS  PubMed  Google Scholar 

  64. Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R, Wiencke J, Neuhaus J (1997) Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol 145:581–593

    Article  CAS  PubMed  Google Scholar 

  65. Pogoda J, Preston-Martin S, Howe G et al (2009) An international case-control study of maternal diet during pregnancy and childhood brain tumor risk: a histology-specific analysis by food group. Ann Epidemiol 19(3):148–160

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gurney J, Mueller B, Preston-Martin S et al (1997) a study of pediatric brain tumors and their association with epilepsy and anti-convulsant use. Neuroepidemiology 16:248–255

    Article  CAS  PubMed  Google Scholar 

  67. Inskip P, Mellemkjaer L, Gridley G, Olsen J (1998) Incidence of intracranial tumours following hospitalization for head injuries (Denmark). Cancer Causes Control 9:109–116

    Article  CAS  PubMed  Google Scholar 

  68. Preston-Martin S, Pogoda J, Schlehofer B et al (1998) An international case-control study of adult glioma and meningioma: the role of head trauma. Int J Epidemiol 27(4):579–586

    Article  CAS  PubMed  Google Scholar 

  69. Wrensch M, Miike R, Lee M, Neuhaus J (2000) Are prior head injuries or diagnostic x-rays associated with glioma in adults? The effects of control selection bias. Neuroepidemiology 19:234–244

    Article  CAS  PubMed  Google Scholar 

  70. de Kock L, Sabbaghian N, Druker H et al (2014) Germ-line and somatic DICER1 mutations in pineoblastoma. Acta Neuropathol 128(4):583–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. de Kock L, Sabbaghian N, Plourde F et al (2014) Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 128(1):111–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dubuc A, Northcott P, Mack S, Whitt H, Pfister S, Taylor M (2010) The genetics of pediatric brain tumors. Curr Neurol Neurosci Rep 10(3):215–223

    Article  CAS  PubMed  Google Scholar 

  73. Foulkes W, Bahubeshi A, Hamel N et al (2011) Extending the phenotypes associated with DICER1 mutations. Hum Mutat 32(12):1381–1384

    Article  CAS  PubMed  Google Scholar 

  74. Hassleblatt M, Nagel I, Oyen F et al (2014) SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol 128(3):453–456

    Article  Google Scholar 

  75. Hottinger A, Khakoo Y (2007) Update on the management of familial central nervous system tumor syndromes. Curr Neurol Neurosci Rep 7:200–207

    Article  PubMed  Google Scholar 

  76. Kimmelman A, Liang B (2001) Familial neurogenic tumor syndromes. Hematol Oncol Clin N Am 15(6):1073–1084

    Article  CAS  Google Scholar 

  77. Kirschner L, Carney J, Pack S et al (2000) Mutations of the gene encoding the protein kinase A type 1-alpha regulatory subunit in patients with the carney complex. Nat Genet 26(1):89–92

    Article  CAS  PubMed  Google Scholar 

  78. Louis DN, Ohgaki H, Wiestler O et al (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ohgaki H, Kim Y, Steinbach J (2010) Nervous system tumors associated with familial tumor syndromes. Curr Opin Neurol 23(6):583–591

    Article  CAS  PubMed  Google Scholar 

  80. Tabori U, Laberge A-M, Ellezam B, Carret A-S (2015) Cancer predisposition in children with brain tumors. In: Scheinemann K, Bouffet E (eds) Pediatric neuro-oncology. Springer Science + Business Media, New York, pp 69–89

    Google Scholar 

  81. Taylor M, Mainprize T, Rutka J, Becker L, Bayani J, Drake J (2001) Medulloblastoma in a child with Rubenstein-Taybi syndrome: case report and review of the literature. Pediatr Neurosurg 35(5):235–238

    Article  CAS  PubMed  Google Scholar 

  82. Villani A, Malkin D, Tabori U (2012) Syndromes predisposing to pediatric central nervous system tumors: lessons learned and new promises. Curr Neurol Neurosci Rep 12(2):153–164

    Article  PubMed  Google Scholar 

  83. Ramaswamy V, Northcott PA, Taylor MD (2011) FISH & Chips: the recipe for imporoved prognostication & outcomes for children with medulloblastoma Cancer Genetics 204:577–588

    Google Scholar 

  84. Fahmideh M, Lavebratt C, Schuz J et al (2015) CCDC26, CDKN2BAS, RTEL1 and TERT polymorphisms in pediatric brain tumor susceptibility. Carcinogenesis 36(8):876–882

    Article  CAS  Google Scholar 

  85. Walsh K, Wiencke J, Lachance D et al (2015) Telomere maintenance and the etiology of adult glioma. Neuro-Oncology 17(11):1445–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Friedman J, Birch P (1997) An association between optic glioma and other tumors of the central nervous system in neurofibromatosis type 1. Neuropediatrics 28:131–132

    Article  CAS  PubMed  Google Scholar 

  87. Gutmann D, Rasmussen S, Wolkenstein P et al (2002) Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology 59:759–761

    Article  CAS  PubMed  Google Scholar 

  88. Listernick R, Charrow J, Greenwald M, Esterly N (1989) Optic gliomas in children with neurofibromatosis type 1. J Pediatr 114(5):788–792

    Article  CAS  PubMed  Google Scholar 

  89. Molloy P, Bilaniuk L, Vaughan S et al (1995) Brainstem tumors in patients with neurofibromatosis type 1: eA distinct clinical entity. Neurology 45(10):1897–1902

    Article  CAS  PubMed  Google Scholar 

  90. Riffaud L, Vinchon M, Ragragui O, Delestret I, Ruchoux M, Dhellemmes P (2002) Hemispheric cerebral gliomas in children with NF1: arguments for a long term follow up. Childs Nerv Syst 18(1–2):43–47

    Article  PubMed  Google Scholar 

  91. Listernick R, Ferner R, Liu G, Gutmann D (2007) Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61(3):189–198

    Article  CAS  PubMed  Google Scholar 

  92. Evans DGR, Sainio M, Baser ME (2000) Neurofibromatosis type 2. J Med Genet 37:897–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evans D (2009) Neurofibromatosis type 2 (NF2): a clinical and molecular review. Orphanet J Rare Dis 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kotecha R, Pascoe E, Rushing E et al (2011) Meningiomas in children and adolescents: a meta-analysis of individual patient data. Lancet Oncol 12(13):1229–1239

    Article  PubMed  Google Scholar 

  95. Plotkin S, Stemmer-Rachamimov A, Barker F II et al (2009) Hearing improvement after Bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361:358–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maddock IR, Moran A, Maher ER, Teare MD et al (1996) A genetic register for von Hippel-Lindau disease. J Med Genet 33(2):120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Corradetti M, Inoki K, Bardeesy N, DePinho R, Guan K-L (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18:1533–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  99. Roach E, Smith M, Huttenlocher P, Bhat M, Alcorn D, Hawley L (1992) Diagnostic criteria: tuberous sclerosis complex. Report of the Diagnostic Criteria Committee of the National Tuberous Sclerosis Association. J Child Neurol 7:221–224

    Article  CAS  PubMed  Google Scholar 

  100. Webb D, Fryer A, Osborne J (1996) Morbidity associated with tuberous sclerosis: a population study. Dev Med Child Neurol 38:146–155

    Article  CAS  PubMed  Google Scholar 

  101. Leiden open variation database: tuberous sclerosis database. http://chromium.liacs.nl/LOVD2/TSC. Accessed 28 Jan 2016

  102. Hoogeveen-Westerveld M, Ekong R, Povey S et al (2013) Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex. Hum Mutat 34(1):167–175

    Article  CAS  PubMed  Google Scholar 

  103. Hoogeveen-Westerveld M, Ekong R, Povey S et al (2012) Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Hum Mutat 33(3):476–479

    Article  CAS  PubMed  Google Scholar 

  104. Northrup H, Kruger DA, International Tuberous Sclerosis Complex Consensus Group (2013) Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49:243–254

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kleihues P, Schauble B, Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations. A synopsis of 91 families. Am J Pathol 150:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Birch J, Hartley A, Blair V et al (1990) Cancer in the families of children with soft tissue sarcoma. Cancer 66(10):2239–2248

    Article  CAS  PubMed  Google Scholar 

  107. Garber J, Goldstein A, Kantor A, Dreyfus M, Fraumeni JJ, Li F (1991) Follow up study of 24 families with Li-Fraumeni syndrome. Cancer Res 51(22):6094–6097

    CAS  PubMed  Google Scholar 

  108. Li F, Fraumeni JJ, Mulvihill J et al (1988) A cancer family syndrome in 24 kindreds. Cancer Res 48(18):5358–5362

    CAS  PubMed  Google Scholar 

  109. Tabori U, Shlien A, Baskin B et al (2010) TP53 alterations determine clinical sub-groups and survival of patients with choroid plexus tumors. J Clin Oncol 28(12):1995–2001

    Article  CAS  PubMed  Google Scholar 

  110. Varley J (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320

    Article  CAS  PubMed  Google Scholar 

  111. Birch J, Alston R, McNally R et al (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 20(34):4621–4628

    Article  CAS  PubMed  Google Scholar 

  112. Trump D, Farren B, Wooding C et al (1996) Clinical studies of multiple endocrine neoplasia type 1 (MEN1). Q J Med 89:653–669

    Article  CAS  Google Scholar 

  113. Robinson S, Cohen A (2000) Cowden disease and L’Hermitte-Duclos disease: characterization of a new phakomatosis. Neurosurgery 46(2):371

    Article  CAS  PubMed  Google Scholar 

  114. Kleihues P, Cavenee W (2000) Pathology & genetics. Tumors of the nervous system. IARC Press, Lyon

    Google Scholar 

  115. Paraf F, Jothy S, Van Meir E (1997) Brain tumor polyposis syndrome: two genetic diseases? J Clin Oncol 15:2744–2758

    Article  CAS  PubMed  Google Scholar 

  116. Vasen H, Sanders E, Taal B et al (1996) The risk of brain tumors in hereditary non-polyposis colorectal cancer (HNPCC). Int J Cancer 65:422–425

    Article  CAS  PubMed  Google Scholar 

  117. Aarnio M, Sankila R, Pukkala E et al (1999) Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81(2):214–218

    Article  CAS  PubMed  Google Scholar 

  118. Durno C, Sherman P, Aronson M et al (2015) Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer 51(8):977–983

    Article  CAS  PubMed  Google Scholar 

  119. Le D, Uram J, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hamilton S, Liu B, Parsons R et al (1995) The molecular basis of Turcot’s syndrome. N Engl J Med 332(13):839–847

    Article  CAS  PubMed  Google Scholar 

  121. Hasle H (2001) Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol 2(7):429–436

    Article  CAS  PubMed  Google Scholar 

  122. Amlashi S, Riffaud L, Brassier G, Morandi X (2003) Nevoid basal cell carcinoma syndrome; relation with desmoplastic medulloblastoma in infancy. A population-based study and review of the literature. Cancer 98(31):618–624

    Article  PubMed  Google Scholar 

  123. Biegel J, Zhou J-Y, Rorke L, Stenstrom C, Wainwright L, Fogelgren B (1999) Germ-line and acquired mutations of IN11 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    CAS  PubMed  Google Scholar 

  124. Cowan R, Hoban P, Kelsey A, Birch J, Gattamaneni R, Evans D (1997) The gene for the naevoid basal cell carcinoma syndrome acts as a tumor-suppressor gene in medulloblastoma. Br J Cancer 76(2):141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stiller C, Bleyer W (2004) Epidemiology. In: Walker D, Perilongo G, Punt J, Taylor R (eds) Brain & spinal tumors of childhood. Arnold, London, pp 35–49

    Chapter  Google Scholar 

  126. Becker Y (1986) Cancer in ataxia-telangiectasia patients: analysis of factors leading to radiation – induced and spontaneous tumors. Anticancer Res 6:1021–1032

    CAS  PubMed  Google Scholar 

  127. Chun H, Gatti R (2004) Ataxia-telangiectasia, an evolving phenotype. DNA Repair 3:1187–1196

    Article  CAS  PubMed  Google Scholar 

  128. Khanna K (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92:795–802

    Article  CAS  PubMed  Google Scholar 

  129. Kuhne M, Riballo E, Rief N, Toghkamm K, Jeggo P (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508

    Article  PubMed  Google Scholar 

  130. Hemminki K, Li X (2004) Association of brain tumors with other neoplasms in families. Eur J Cancer 40:253–259

    Article  CAS  PubMed  Google Scholar 

  131. Malmer B, Henriksson R, Gronberg H (2002) Different aetiology of familial low-grade and high-grade glioma? A nationwide cohort study of familial glioma. Neuroepidemiology 21:279–286

    Article  PubMed  Google Scholar 

  132. Malmer B, Henriksson R, Gronberg H (2003) Familial brain tumors – genetics of environment? A nationwide cohort study of cancer risk in spouses and first-degree relatives of brain tumor patients. Int J Cancer 106:260–263

    Article  CAS  PubMed  Google Scholar 

  133. Hemminki K, Li X, Collins V (2001) A population-based study of familial central nervous system hemangioblastomas. Neuroepidemiology 20:257–261

    Article  CAS  PubMed  Google Scholar 

  134. Paunu N, Syrjakoski K, Sankila R et al (2001) Analysis of p53 tumor suppressor gene in families with multiple glioma patients. J Neuro-Oncol 55(3):159–165

    Article  CAS  Google Scholar 

  135. Chu T, Shah A, Walker D, Coleman M (2015) Pattern of symptoms and signs of primary intracranial tumors in children and young adults: a record linkage study. Arch Dis Child 12:1115–1122

    Google Scholar 

  136. Wilne S, Collier J, Kennedy C, Koller K, Grundy R, Walker D (2007) Presentation of childhood CNS tumors: a systematic review and meta-analysis. Lancet Oncol 8:685–695

    Article  PubMed  Google Scholar 

  137. HeadSmart: be brain tumor aware (2015) A new clinical guideline from the Royal College of Paediatrics & Child Health with a national awareness campaign accelerates brain tumor diagnosis in UK children – ‘HeadSmart: Be Brain Tumor Aware’. Neuro Oncol. Vol 18(3):445–454

    Google Scholar 

  138. Pathway to diagnosis: the diagnosis of brain tumors. RCPCH (2008). London

    Google Scholar 

  139. Improving outcomes in children and young people with cancer. National Institute for Health & Care Excellence (NICE) (2005). London

    Google Scholar 

  140. Improving outcomes for people with brain and other CNS tumors. London

    Google Scholar 

  141. Nicholson JC, Punt J, Hale J, Saran F, Calaminus G, Germ Cell Tumour Working Groups of the United Kingdom Children’s Cancer Study Group (UKCCSG), International Society of Paediatric Oncology (SIOP) (2002) Neurosurgical management of paediatric germ cell tumours of the central nervous system – a multi-disciplinary team approach for the new millennium. Br J Neurosurg 16:93–95

    Article  CAS  PubMed  Google Scholar 

  142. Walker D, Punt J, Sokal M (1999) Clinical management of brain stem glioma (BSG). Arch Dis Child 40:558–564

    Article  Google Scholar 

  143. Walker D, Punt J, Sokal M (2004) Brainstem tumors. In: Walker D, Perilongo G, Punt J, Taylor R (eds) Brain & spinal tumors of childhood. Arnold, London

    Google Scholar 

  144. Walker D, Liu J-F, Kieran M et al (2013) A multi-disciplinary consensus statement concerning surgical approaches to low-grade, high-grade astrocytomas and diffuse intrinsic pontine gliomas in childhood (CPN Paris 2011) using the Delphi method. Neuro-Oncology 15(4):462–468

    Article  PubMed  PubMed Central  Google Scholar 

  145. Westphal M, Hilt D, Bortey E et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5(2):79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Barnett F, Scharer-Schuksz M, Wood M, Yu X, Wagner T, Friedlander M (2004) Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther 11(16):1283–1289

    Article  CAS  PubMed  Google Scholar 

  147. Chiocca E, Abbed K, Tatter S et al (2004) A Phase 1 open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas in the adjuvant setting. Mol Ther 10(5):958–966

    Article  CAS  PubMed  Google Scholar 

  148. Glorioso J, Fink D (2004) Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annu Rev Microbiol 58:253–271

    Article  CAS  PubMed  Google Scholar 

  149. Immonen A, Vapalahti M, Tyynela K et al (2004) Adv-HSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised controlled study. Mol Ther 10(5):967–972

    Article  CAS  PubMed  Google Scholar 

  150. McKeown S, Ward C, Robson T (2004) Gene-directed enzyme prodrug therapy: a current assessment. Curr Opin Mol Ther 6(4):421–435

    CAS  PubMed  Google Scholar 

  151. Okada H, Pollack IF (2004) Cytokine gene therapy for malignant glioma. Expert Opin Biol Ther 4(10):1609–1620

    Article  CAS  PubMed  Google Scholar 

  152. Merchant T, Kun L, Wu S, Xiong X, Sanford R, Boop F (2009) Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J Clin Oncol 27(22):3598–3604

    Article  PubMed  PubMed Central  Google Scholar 

  153. Packer R, Goldwin J, Nicholson HS et al (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol 17(7):2127–2136

    Article  CAS  PubMed  Google Scholar 

  154. Bleyer A, Choi M, Wang S, Fuller C, Raney R (2009) Increased vulnerability of the spinal cord to radiation or intrathecal chemotherapy during adolescence: a report from the Children’s Oncology Group. Pediatr Blood Cancer 53(7):1205–1210

    Article  PubMed  Google Scholar 

  155. Moskowitz C, Chou J, Wolden S et al (2014) Breast cancer after chest radiation therapy for childhood cancer. J Clin Oncol 32(21):2217–2223

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kumar R, Zhai H, Both S, Tochner Z, Lustig R, Hill-Kayser C (2013) Breast cancer screening for childhood cancer survivors after craniospinal irradiation with protons versus x-rays: a dosimetric analysis and review of the literature. J Pediatr Hematol Oncol 35(6):462–467

    Article  PubMed  Google Scholar 

  157. Balis F, Poplack D (1993) Cancer chemotherapy. In: Nathan D, Oski F (eds) Hematology of infancy and childhood. WB Saunders, Philadelphia, pp 1207–1238

    Google Scholar 

  158. Vivekanandan S, Breene R, Ramajujachar R et al (2015) The UK experience of a treatment strategy for pediatric metastatic medulloblastoma comprising intensive induction chemotherapy, hyperfractionated accelerated radiotherapy and response directed high dose myeloablative chemotherapy or maintenance chemotherapy (Milan strategy). Pediatr Blood Cancer 62(12):2132–2139

    Article  PubMed  Google Scholar 

  159. Glaser A, Buxton N, Hewitt M, Punt J, Walker D (1996) The role of steroids in paediatric central nervous system malignancies. Br J Neurosurg 10:123–124

    Google Scholar 

  160. Tabori U, Sung L, Hudin J et al (2005) Medulloblastoma in the second decade of life: a specific group with respect to toxicity and management. Cancer 103(9):1874–1880

    Article  PubMed  Google Scholar 

  161. Murray M, Bartels U, Nishikawa R, Fangusaro J, Matsutani M, Nicholson J (2015) Consensus on the management of intracranial germ-cell tumors. Lancet Oncol 16(9):e470–e477

    Article  PubMed  Google Scholar 

  162. Wara W, Jenkin R, Evans A et al (1979) Tumors of the pineal and suprasellar region: Children’s Cancer Study Group treatment results 1960–1975. Cancer 43:698–701

    Article  CAS  PubMed  Google Scholar 

  163. Jennings M, Gelman R, Hochberg F (1985) Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 63:155–167

    Article  CAS  PubMed  Google Scholar 

  164. Calaminus G, Kortmann R, Worch J et al (2013) SIOP CNS GCT 95: final report of outcome of a prospective, multinational non-randomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro-Oncology 15(6):788–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yang Q-Y, Chen Z-P (2012) The treatment for histologically unconfirmed intracranial germ cell tumors: experience of 38 cases. Neuro-Oncology 14(Suppl 1):i49–i55

    Article  Google Scholar 

  166. Bates A, Bullivant B, Sheppard M, Stewart P (1999) Life expectancy following surgery for pituitary tumors. Clin Endocrinol (Oxf) 50:315–319

    Article  CAS  Google Scholar 

  167. Bates A, Van’t Hoff W, Jones P, Clayton R (1996) The effect of hypopituitarism on life expectancy. Clin Endocrinol Metab 81:1169–1172

    CAS  Google Scholar 

  168. Bulow B, Hagmar L, Mikoczy Z, Nordstrom C, Erfurth E (1997) Increased cerebrovascular mortality in patients with hypopituitarism. Clin Endocrinol (Oxf) 46:75–81

    Article  CAS  Google Scholar 

  169. Nilsson B, Gustavasson-Kadaka E, Bengtsson B, Jonsson B (2000) Pituitary adenomas in Sweden between 1958 and 1991: incidence, survival, and mortality. J Clin Endocrinol Metab 85:1420–1425

    CAS  PubMed  Google Scholar 

  170. Rosen T, Bengtsson B (1990) Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 336:285–288

    Article  CAS  PubMed  Google Scholar 

  171. Tomlinson J, Holden N, Hills R et al (2001) Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357:425–431

    Article  CAS  PubMed  Google Scholar 

  172. Motoyama T, Watanabe H, Yamamoto T, Sekiguchi M (1987) Production of alpha-fetoprotein by human germ cell tumors in vivo and in vitro. Acta Pathol Jpn 37:1263–1277

    CAS  PubMed  Google Scholar 

  173. Motoyama T, Watanabe H, Yamamoto T, Sekiguchi M (1988) Production of beta-human chorionic gonadotropin by germ cell tumors in vivo and in vitro. Acta Pathologica Japan 38:577–590

    CAS  Google Scholar 

  174. Weissman D (1988) Glucocorticoid treatment for brain metastases and epidural spinal cord compression: a review. J Clin Oncol 6:543–551

    Article  CAS  PubMed  Google Scholar 

  175. Itoyama Y, Kochi M, Yamamoto H, Kuratsu J, Uemura S, Ushio Y (1990) Clinical study of intracranial non-germinomatous germ cell tumors producing alpha-fetoprotein. Neurosurgery 27:454–460

    Article  CAS  PubMed  Google Scholar 

  176. Packer R, Sutton L, Rosenstock J et al (1984) Pineal region tumors of childhood. Pediatrics 74(1):97–102

    CAS  PubMed  Google Scholar 

  177. Murray M, Nicholson J, Coleman N (2015) Biology of childhood germ cell tumors, focusing on the significance of microRNAs. Andrology 3:129–139

    Article  CAS  PubMed  Google Scholar 

  178. Murray M, Horan G, Lowis S, Nicholson J (2013) Highlights from the Third International Central Nervous System Germ Cell Tumor symposium: laying the foundations for future consensus. eCancer 7:333

    Article  Google Scholar 

  179. Fukushima S, Otsuka A, Suzuki T et al (2014) Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol 127(6):911–925

    Article  CAS  PubMed  Google Scholar 

  180. Wang L, Yamaguchi S, Burstein M et al (2014) Novel somatic and germline mutations in intracranial germ cell tumors. Nature 511:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Palmer R, Murray M, Saini H et al (2010) Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 70:2911–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Murray M, Coleman N (2012) Testicular cancer: a new generation of biomarkers for malignant germ cell tumors. Nat Rev Urol 9(6):298–300

    Article  CAS  PubMed  Google Scholar 

  183. Murray M, Halsall D, Hook C, Williams D, Nicholson J, Coleman N (2011) Identification of microRNAs from the miR-371-373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol 135(1):119–125

    Article  CAS  PubMed  Google Scholar 

  184. Terashima K, Shen J, Luan J et al (2013) MicroRNA 371–373 and 302a in cerebrospinal fluid are potential tumor-derived biomarkers for intracranial germ cell tumors. Br J Neurosurg 27(4):e1–e25

    Article  Google Scholar 

  185. Eiser C (1997) Children’s quality of life measures. Arch Dis Child 77:350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Herrman H, Westphal M, Winkler K, Laas R, Schulte F (1994) Treatment of non-germinomatous germ-cell tumors of the pineal region. Neurosurgery 34:524–529

    Article  Google Scholar 

  187. Glaser A, Furlong W, Walker D et al (1999) Applicability of the health utilities index to a population of childhood survivors of central nervous system tumors in the United Kingdom. Eur J Cancer 35(2):256–261

    Article  CAS  PubMed  Google Scholar 

  188. Kiltie A, Gattamaneni R (1995) Survival and quality of life of paediatric intracranial germ cell tumor patients treated at the Christie Hospital, 1972–1993. Med Paediatr Oncol 25:450–456

    Article  CAS  Google Scholar 

  189. Merchant T, Davis B, Sheldon J, Leibel S (1998) Radiation therapy for relapsed CNS germinoma after primary chemotherapy. J Clin Oncol 16(1):204–209

    Article  CAS  PubMed  Google Scholar 

  190. Ogawa K, Toita T, Nakamura K et al (2003) Treatment and prognosis of patients with intracranial non-germinomatous malignant germ cell tumors. Cancer 98:369–376

    Article  PubMed  Google Scholar 

  191. Shibamoto Y, Mitsuyuki A, Yamashita J et al (1988) Treatment results of intracranial germinoma as a function of the irradiated volume. Int J Radiat Oncol Biol Phys 15:285–290

    Article  CAS  PubMed  Google Scholar 

  192. Aoyama H, Shirato H, Kakuto Y et al (1998) Pathologically-proven intracranial germinoma treated with radiation therapy. Radiother Oncol 47:201–205

    Article  CAS  PubMed  Google Scholar 

  193. Kennedy C, Bull K (2004) Effect of neo-adjuvant chemotherapy on long-term health state and behaviour in the PNET3 RCT of treatment for primitive neuro-ectodermal tumor (PNET). ISPNO. Neuro Oncology, Boston

    Google Scholar 

  194. Benesch M, Lackner H, Schagerl S, Gallistl S, Frey E-M, Urban C (2001) Tumor- and treatment related side effects after multimodal therapy of childhood intracranial germ cell tumors. Acta Paediatr 90:264–270

    Article  CAS  PubMed  Google Scholar 

  195. Jenkin D, Shabanah M, Shail E et al (2000) Prognostic factors for medulloblastoma. Int J Radiat Oncol Biol Phys 47(3):573–584

    Article  CAS  PubMed  Google Scholar 

  196. Sankaranarayanan R, Black R, Swaminathan R, Parkin D (1998) An overview of cancer survival in developing countries. IARC Sci Publ 145:135–173

    Google Scholar 

  197. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: incidence – SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2014 Sub (1973–2012 varying) – Linked To County Attributes – Total U.S., 1969–2013 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch, released April 2015, based on the November 2014 submission

  198. MacDonald L, On behalf of the Neuro-Oncology Group (2015) Top 10 priorities for clinical research in primary brain and spinal cord tumors. Final report of the James Lind Alliance Priority Setting Partnership in Neuro-Oncology

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the very capable assistance of Sue Franklin in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Walker MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing

About this chapter

Cite this chapter

Walker, D. et al. (2017). Central Nervous System Tumors. In: Bleyer, A., Barr, R., Ries, L., Whelan, J., Ferrari, A. (eds) Cancer in Adolescents and Young Adults. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-33679-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33679-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33677-0

  • Online ISBN: 978-3-319-33679-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics