Skip to main content

Extended Formulations in Mixed-Integer Convex Programming

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

Abstract

We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://erlingdandersen.blogspot.com/2010/11/which-cones-are-needed-to-repre sent.html.

  2. 2.

    Solutions reported to Stefan Vigerske, October 5, 2015.

References

  1. MINLPLIB2 library. http://www.gamsworld.org/minlp/minlplib2/html/

  2. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22, 555–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1, 1–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137, 453–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-Integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  MATH  Google Scholar 

  7. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonami, P., Kilinç, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 1–39. Springer, New York (2012)

    Chapter  Google Scholar 

  9. Byrd, R.H., Nocedal, J., Waltz, R.: KNITRO: An integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization. Nonconvex Optimization and its Applications, vol. 83, pp. 35–59. Springer, Berlin (2006)

    Chapter  Google Scholar 

  10. Diamond, S., Chu, E., Boyd, S.: Disciplined convex programming. http://dcp.stanford.edu/

  11. Drewes, S., Ulbrich, S.: Subgradient based outer approximation for mixed integer second order cone programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 41–59. Springer, New York (2012)

    Chapter  Google Scholar 

  12. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66, 327–349 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldberg, N., Leyffer, S.: An active-set method for second-order conic-constrained quadratic programming. SIAM J. Optim. 25, 1455–1477 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization. Nonconvex Optimization and its Applica-tions, vol. 84, pp. 155–210. Springer, US (2006)

    Chapter  Google Scholar 

  15. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 61–89. Springer, New York (2012)

    Chapter  Google Scholar 

  16. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31, 1533–1546 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105, 594–603 (1998)

    Article  MATH  Google Scholar 

  18. Hien, L.: Differential properties of euclidean projection onto power cone. Math. Methods Oper. Res. 83(3), 265–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hijazi, H., Bonami, P., Ouorou, A.: An outer-inner approximation for separable mixed-integer nonlinear programs. INFORMS J. Comput. 26, 31–44 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kılınç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. thesis, University of Wisconsin-Madison (2011)

    Google Scholar 

  21. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. thesis, University of Dundee, December 1993

    Google Scholar 

  22. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998). International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubin, M., Dunning, I.: Computing in operations research using Julia. INFORMS J. Comput. 27, 238–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-integer convex programming, ArXiv e-prints (2015)

    Google Scholar 

  25. Mittelmann, H.: MINLP benchmark. http://plato.asu.edu/ftp/minlp_old.html

  26. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Operator splitting for conic optimization via homogeneous self-dual embedding, ArXiv e-prints (2013)

    Google Scholar 

  27. Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone. Ph.D. thesis, Stanford University, Stanford, CA, March 2015

    Google Scholar 

  28. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: Proceedings of HPTCDL 2014, Piscataway, NJ, USA, pp. 18–28. IEEE Press (2014)

    Google Scholar 

  30. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed integer conic quadratic programming, ArXiv e-prints (2015)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their comments. They greatly improved the clarity of the manuscript. We also thank one of the anonymous referees for pointing out the SOC-representability of the sssd family of instances originally derived in [15]. M. Lubin was supported by the DOE Computational Science Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308. The work at LANL was funded by the Center for Nonlinear Studies (CNLS) and was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. J.P. Vielma was funded by NSF grant CMMI-1351619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles Lubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lubin, M., Yamangil, E., Bent, R., Vielma, J.P. (2016). Extended Formulations in Mixed-Integer Convex Programming. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics