Skip to main content

Marine Bacteria and Archaea: Diversity, Adaptations, and Culturability

  • Chapter
  • First Online:
The Marine Microbiome

Abstract

With an estimated total number of 6.6 × 1029 cells, Bacteria and Archaea in marine waters and sediments constitute a major fraction of global microbial biomass. Most marine bacterial communities are highly diverse and individual samples can comprise over 20,000 species. Different marine habitats such as coastal surface waters, subsurface open ocean waters and sediments are colonized by distinct bacterial communities. Consequently, global marine bacterial diversity must be very high but has remained largely uncharted to date. One major obstacle that needs to be overcome is the persisting difficulty to culture most of the dominant marine bacterial and archaeal phylotypes. Typically, these difficulties relate to an insufficient appreciation of the specific physiological requirements and adaptations of marine Bacteria and Archaea. In many marine environments, concentrations of readily utilizable dissolved organic carbon (DOC) compounds or inorganic nutrients are present at submicromolar concentrations whereas suspended marine particles constitute spatially discrete hot spots of growth substrates. Known bacterial adaptations to oligotrophic growth conditions include high affinity uptake systems, low growth rates and cell sizes, streamlined genomes, little regulatory flexibility, physiological specialization and low loss rates due to grazing and viral lysis. On the opposite, lineages adapted to exploitation of nutrient hot spots are motile, chemotactically active, have large cells, adhere to particles, employ specialized uptake systems for high molecular weight substrates, excrete exoenzymes, and feature a broad substrate spectrum. Besides these canonical types of adaptations, interesting novel traits have been discovered over the past years, like the widely distributed proton-pumping bacteriorhodopsins, a multitude of carbohydrate-active enzymes, TonB-like receptors, thiosulfate oxidation, methylotrophic pathways, carbon monoxide oxidation, metabolism of compatible solutes, and heavy-metal resistance. In order to retrieve and study representatives of not-yet-cultured bacterial lineages in the laboratory, future culture attempts need to be modified according to this improved knowledge of the specific adaptations of marine Bacteria and Archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allers E, Wright JJ, Konwar KM et al (2013) Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J 7:256–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  CAS  PubMed  Google Scholar 

  • Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci 3:401–425

    Article  PubMed  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Beardsley C, Pernthaler J, Wosniok W et al (2003) Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol 69:2624–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beja O, Aravind L, Koonin EV et al (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  CAS  PubMed  Google Scholar 

  • Benner R, Amon RMW (2015) The size-reactivity continuum of major bioelements in the ocean. Ann Rev Mar Sci 7:185–205

    Article  PubMed  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42

    Google Scholar 

  • Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256

    Article  CAS  PubMed  Google Scholar 

  • Blanvillain S, Meyer D, Boulanger A et al (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boras JA, Vaqué D, Maynou F et al (2015) Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea. Estuar Coast Shelf Sci 154:102–110

    Article  CAS  Google Scholar 

  • Brinkhoff T, Giebel HA, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539

    Article  CAS  PubMed  Google Scholar 

  • Brown MV, Lauro FM, DeMaere MZ et al (2012) Global biogeography of SAR11 marine bacteria. Mol Syst Biol 8:595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ et al (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Bryant DA, Liu Z, Li T et al (2012) Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexi, and Acidobacteria. In: Burnap RL, Vermaas WFJ (eds) Advances in photosynthesis and respiration. Functional genomics and evolution of photosynthetic systems, vol 33. Springer, Dordrecht, pp 47–102

    Google Scholar 

  • Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Button DK, Schut F, Quang P et al (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carini P, Steindler L, Beszteri S et al (2013) Nutrient requirements for growth of the extreme oligotroph “Candidatus Pelagibacter ubique” HTCC1062 on a defined medium. ISME J 7:592–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson CA, Morris R, Parsons R et al (2009) Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargasso Sea. ISME J 3:283–295

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Ostrowski M, Fegatella F (2003) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb Ecol 45(3):203–217

    CAS  PubMed  Google Scholar 

  • Chernin LS, Winson MK, Thompson JM et al (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JC, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DH, Park KT, An SM et al (2015) Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLoS ONE 10:e0116271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christie-Oleza JA, Scanlan DJ, Armengaud J (2015) “You produce while I clean up”, a strategy revealed by exoproteomics during Synechococcus-Roseobacter interactions. Proteomics 15:3454–3462

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Sullibvan MB, Martiny AC et al (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311:1768–1770

    Article  CAS  PubMed  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very low nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68(8):3878–3885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coolen MJL, Cypionka H, Smock A et al (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410

    Article  CAS  PubMed  Google Scholar 

  • Cottrell MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Oceanogr 48:168–178

    Article  Google Scholar 

  • D’Ambrosio L, Ziervogel K, MacGregor B et al (2014) Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J 8:2167–2179

    Article  PubMed  CAS  Google Scholar 

  • D’Hondt S, Spivack A, Pockalny R et al (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalsgaard T, Thamdrup B, Farías L, Revsbech NP (2012) Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol Oceanogr 57:1331–1346

    Article  CAS  Google Scholar 

  • De Paoli P (2005) Bio-banking in microbiology: from sample collection to epidemiology, diagnosis and research. FEMS Microbiol Rev 29:897–910

    Article  PubMed  CAS  Google Scholar 

  • De Saab O (2001) A comparative study of preservation and storage of Haemophilus influenzae. Mem Inst Oswaldo Cruz 96:583–586

    Article  Google Scholar 

  • Doos K, Nilsson J, Nycander J et al (2012) The world ocean thermohaline circulation. J Phys Oceanogr 42:1445–1460

    Article  Google Scholar 

  • Ducklow H (2000) Bacterial production and biomass in the ocean. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss Inc, New York, pp 85–120

    Google Scholar 

  • Eilers H, Pernthaler J, Amann R (2000) Succession of pelagic marine bacteria during enrichment: a close look at cultivation-induced shifts. Appl Environ Microbiol 66:4634–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers H, Pernthaler J, Peplies J et al (2001) Isolation of novel pelagic bacteria from the German Bight and their seasonal contribution to surface picoplankton. Appl Environ Microbiol 67:5134–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel A (2000) The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (alpha) during the decline of a diatom bloom. J Plankton Res 22:485–497

    Article  CAS  Google Scholar 

  • Engel A, Thoms S, Riebesell U et al (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428(6986):929–932

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Gómez B, Richter M, Schüler M et al (2013) Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J 7:1026–1037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Follows MJ, Dutiewicz S, Grant S et al (2007) Emergent biogeography of microbial communities in a model ocean. Science 30:1843–1846

    Article  CAS  Google Scholar 

  • Fontanez KM, Eppley JM, Samo TJ et al (2015) Microbial community structure and function on sinking particles in the North Pacific subtropical gyre. Front Microbiol 6:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Frigaard NU, Martinez A, Mincer TJ et al (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T et al (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci 109:17633–17638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gich F, Janys MA, König M et al (2012) Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ Microbiol 14:2984–2997

    Article  PubMed  Google Scholar 

  • Giebel HA, Kalhoefer D, Gahl-Janssen R et al (2013) Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evol Mircobiol 63:4207–4217

    Article  CAS  Google Scholar 

  • Gifford SM, Sharma S, Booth M et al (2013) Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J 7:281–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni SJ, Tripp JH, Givan S et al (2005a) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309(5738):1242–1245

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Bibbs L, Cho JC et al (2005b) Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:82–85

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Consarnau L, González JM, Coll-Lladó M et al (2007) Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445:210–213

    Article  PubMed  CAS  Google Scholar 

  • Grossart H, Riemann L, Azam F (2001) Bacterial motility in the sea and its ecological implications. Aquat Microb Ecol 25:247–258

    Article  Google Scholar 

  • Grzymski JJ, Dussaq AM (2012) The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J 6(1):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn M, Höfle M (1999) Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl Environ Microbiol 65(11):4863–4872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MW, Stadler P, Wu QL et al (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390

    Article  CAS  PubMed  Google Scholar 

  • Hahnke RL, Harder J (2013) Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol 36:497–504

    Article  CAS  PubMed  Google Scholar 

  • Harrison JA (1955) Survival of bacteria upon repeated freezing and thawing. J Bacteriol 711–715

    Google Scholar 

  • Herlemann DPR, Labrenz M, Jürgens K et al (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hmelo LR, Mincer TJ, Van Mooy BAS (2011) Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments. Environ Microbiol Rep 3:682–688

    Article  CAS  PubMed  Google Scholar 

  • Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83–94

    Article  CAS  PubMed  Google Scholar 

  • Hubálek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Arnosti C, Brüchert V et al (2010) Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environ Microbiol 12:1089–1104

    Article  CAS  PubMed  Google Scholar 

  • Hunt DE, David LA, Gevers D et al (2008) Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Imachi H, Aoi K, Tasumi E et al (2011) Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J 5:1913–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  CAS  PubMed  Google Scholar 

  • Jaspers E, Overmann J (1997) Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities. Appl Environ Microbiol 63:3176–3181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaspers E, Overmann J (2004) The ecological significance of “microdiversity”: identical 16S rRNA gene sequences represent bacteria with highly divergent genomes and physiology. Appl Environ Microbiol 70:4831–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A et al (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1741

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang I, Oh HM, Kang D et al (2013) Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci USA 110:12343–12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiørboe T, Jackson G (2001) Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol Oceanogr 46:1309–1318

    Article  Google Scholar 

  • Kiørboe T, Grossart HP, Ploug H et al (2002) Mechanisms and rates of bacterial colonization of sinking aggregates. Appl Environ Microbiol 68:3996–4006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirchman DL, Meon B, Ducklow HW et al (2001) Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica. Deep Sea Res II Topical Stud Oceanogr 48:4179–4197

    Article  CAS  Google Scholar 

  • Koch AL (2001) Oligotrophs versus copiotrophs. BioEssays 23:657–661

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  CAS  Google Scholar 

  • Konstantinidis KT, Braff J, Karl DM et al (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4000 m at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol 75:5345–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauro FM, McDougald D, Thomas T et al (2009) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106:15527–15533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebaron P, Servais P, Troussellier M et al (2001) Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in abundances, activity and composition. FEMS Microbiol Ecol 34:255–266

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG et al (2013) Predominant Archaea in marine sediments degrade detrital proteins. Nature 496:215–218

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, de Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  PubMed  Google Scholar 

  • Lou YW, Friedrichs MAM, Doney SC et al (2010) Oceanic heterotrophic bacterial nutrition by semilabile DOM as revealed by data assimilative modeling. Aquat Microb Ecol 60:273–287

    Article  Google Scholar 

  • Lozupone C, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104(27):11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfadyen A (1899) On the influence of the temperature of liquid air on bacteria. Proc R Soc Lond 66:180–182

    Article  Google Scholar 

  • Malmstrom RR, Kiene RP, Cottrell MT et al (2004) Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol 70:4129–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann EL, Ahlgren N, Moffett JW et al (2002) Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol Oceanogr 47:976–988

    Article  CAS  Google Scholar 

  • Mann AJ, Hahnke RL, Huang S et al (2013) The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 79:6813–6822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschall E, Jogler M, Henssge U et al (2010) Large scale distribution and activity patterns of an extremely low-light adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 12:1348–1362

    Article  CAS  PubMed  Google Scholar 

  • Marshall KT, Morris RM (2013) Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. ISME J 7(2):452–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarren J, Becker JW, Repeta DJ et al (2010) Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA 107:16420–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy M, Hedges J, Benner R (1996) Major biochemical composition of dissolved high molecular weight organic matter in seawater. Mar Chem 55:281–297

    Article  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT et al (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific subtropical gyre. Environ Microbiol 9:1162–1175

    Google Scholar 

  • Moore LR, Chisholm SW (1999) Photophysiology of the marine cyanobacterium Prochlorococcus: ecotypic differences among cultured isolates. Limnol Oceanogr 44:628–638

    Article  Google Scholar 

  • Moore J, Shaw A (2001) Long-term preservation of strains of Burkholderia cepacia, Pseudomonas spp. and Stenotrophomonas maltophilia isolated from patients with cystic fibrosis. Lett Appl Microbiol 33:82–83

    Article  CAS  PubMed  Google Scholar 

  • Moore L, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467

    Article  CAS  PubMed  Google Scholar 

  • Moore LR, Post AF, Rocap G et al (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanogr 47:989

    Article  CAS  Google Scholar 

  • Morris RM, Rappé MS, Connon SA et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Vergin KL, Cho JC et al (2005) Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol Oceanogr 50:1687–1696

    Article  CAS  Google Scholar 

  • Mou XZ, Hodson RE, Moran MA (2007) Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater. Environ Microbiol 9:2025–2037

    Article  CAS  PubMed  Google Scholar 

  • Nelson CE, Carlson CA (2012) Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environ Microbiol 14:1500–1516

    Article  CAS  PubMed  Google Scholar 

  • Neumann AM, Balmonte JP, Berger M et al (2015) Different utilization of alginate and other algal polysaccharides by marine Alteromonas macleodii ecotypes. Environ Microbiol 17:3857–3868

    Google Scholar 

  • Oh HM, Kwon KK, Kang I et al (2010) Complete genome sequence of “Candidatus Puniceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J Bacteriol 192:3240–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orcutt BN, Sylvan JB, Knab NJ et al (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overmann J (2005) Chemotaxis and behavioral physiology of not-yet-cultivated microbes. Methods Enzymol 397:133–147

    Article  CAS  PubMed  Google Scholar 

  • Overmann J (2013) Principles of enrichment, isolation, cultivation, and preservation of bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes, 4th edn, Prokaryotic biology and symbiotic associations. Springer, New York, pp 149–207

    Google Scholar 

  • Overmann J (2015) Significance and future role of microbial resource centers. Syst Appl Microbiol 38:258–265

    Article  PubMed  Google Scholar 

  • Parkes RJ, Cragg B, Roussel E (2014) A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol 352:409–425

    Article  CAS  Google Scholar 

  • Pedrotti ML, Beauvais S, Kerros ME et al (2009) Bacterial colonization of transparent exopolymeric particles in mesocosms under different turbulence intensities and nutrient conditions. Aquat Microb Ecol 55:301–312

    Article  Google Scholar 

  • Pepe-Ranney C, Hall EK (2015) The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly. Front Microbiol 6:703

    Article  PubMed  PubMed Central  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy LR, Williams PJ, Azam F et al (2007) The microbial loop. Oceanography 20(2):28–33

    Article  Google Scholar 

  • Prakash O et al (2013) Practice and prospects of microbial preservation. FEMS Microbiol Lett 339:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rappé M, Connon S, Vergin K et al (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  CAS  Google Scholar 

  • Rivers T (1927) Effect of repeated freezing (−185 °C) and thawing on colon bacilli, virus III, vaccine virus, herpes virus, bacteriophage; complement and trypsin. J Exp Med 11–21

    Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J et al (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Brito B, Li LL, Wegley L et al (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    Article  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarmento H, Gasol JM (2012) Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol 14:2348–2360

    Article  CAS  PubMed  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S et al (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73:249–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J et al (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Article  CAS  PubMed  Google Scholar 

  • Seyedsayamdost MR, Carr G, Kolter R et al (2011) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR, Wang R, Kolter R et al (2014) Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J Am Chem Soc 136:15150–15153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour JR, MItchell JG, Seuront L (2004) Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquat Microb Ecol 35:1–16

    Article  Google Scholar 

  • Sheik CS, Jain S, Dick GJ (2014) Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 16:304–317

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B et al (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Smith DC, Simon M, Alldredge AL et al (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139–142

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söhngen C, Podstawka A, Bunk B et al (2015) BacDive—the bacterial diversity metadatabase in 2016. Nucleic Acids Res. doi:10.1093/nar/gkv983

    Google Scholar 

  • Squires R, Hartsell S (1955) Survival and growth initiation of defrosted Escherichia coli as affected by frozen storage menstrua. Appl Microbiol 40–45

    Google Scholar 

  • Sub J, Engelen B, Cypionka H et al (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121

    Article  CAS  Google Scholar 

  • Sun J, Steindler L, Thrash JC et al (2011) One carbon metabolism in SAR11 pelagic marine bacteria. PLoS ONE 6(8):e23973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunagawa S, Coelho L, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348(6237):1261359-1–1261359-10

    Google Scholar 

  • Suzuki M (1999) Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquat Microb Ecol 20:261–272

    Article  Google Scholar 

  • Swan BK, Tupper B, Sczyrba A et al (2013) Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci USA 110:11463–11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift H (1921) Preservation of stock cultures of bacteria by freezing and drying. J Exp Med 69–75

    Google Scholar 

  • Tang K, Jiao N, Liu K (2012) Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLoS ONE 7:e41204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JR, Stocker R (2012) Trade-offs of chemotactic foraging in turbulent water. Science 338:675–679

    Article  CAS  PubMed  Google Scholar 

  • Teeling H, Fuchs BM, Becher D et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Barbeyron T, Tonon T (2012) Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 14:2379–2394

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ (2007) Vacuum-drying and cryopreservation of prokaryotes. Methods Mol Biol 368:73–97

    Article  PubMed  Google Scholar 

  • Tout J, Jeffries TC, Petrou K et al (2015) Chemotaxis by natural populations of coral reef bacteria. ISME J 9:1–14

    Article  CAS  Google Scholar 

  • Traving SJ, Thygesen UH, Riemann L et al (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off. Appl Environ Microbiol 81:7385–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripp HJ, Kitner JB, Schwalbach MS et al (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452(7188):741–744

    Article  CAS  PubMed  Google Scholar 

  • Tripp HJ, Schwalbach MS, Meyer MM et al (2009) Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ Microbiol 11:230–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA et al (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94

    Article  CAS  PubMed  Google Scholar 

  • Uphoff HU, Felske A, Fehr W et al (2001) The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiol Ecol 35:249–258

    Article  CAS  PubMed  Google Scholar 

  • Valentine DL, Reeburgh WS, Blanton DC (2000) A culture apparatus for maintaining H2 at sub-nanomolar concentrations. J Microbiol Methods 39:243–251

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Viklund J, Ettema TJ, Andersson SG (2012) Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol Biol Evol 29:599–615

    Article  CAS  PubMed  Google Scholar 

  • Walker V, Palmer G, Voordouw G (2006) Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol 72:1784–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sheng HF, He Y et al (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions if Illumina tags. Appl Environ Microbiol 78:8264–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tomasch J, Jarek M (2014) A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 5:1–11

    Google Scholar 

  • Wasmund K, Schreiber L, Lloyd KG et al (2013) Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococccoidea, phylum Chloroflexi. ISME J 8:383–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright JJ, Mewis K, Hanson NW et al (2014) Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J 8:455–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QL, Zwart G, Schauer M et al (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Sun Q, Sugawara H et al (2013) Global catalogue of microorganisms (gcm): a comprehensive database and information retrieval, analysis, and visualization system for microbial resources. BioMed Cent Genomics 14:933

    Article  CAS  Google Scholar 

  • Xiong ZQ, Wang JF, Hao YY (2013) Recent advances in the discovery and development of marine microbial natural products. Mar Drugs 11:700–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Q, Fu B, Li B et al (2013) Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLoS ONE 8:e55148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yooseph S, Nealson KH, Rusch DB et al (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zengler K, Toledo G, Rappe M et al (2002) Cultivating the uncultured. Proc Natl Acad Sci 99:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jiao N, Cottrell MT et al (2006) Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat Microb Ecol 43:233–241

    Article  Google Scholar 

  • Zinger L, Amaral-Zettler LA, Fuhrman JA et al (2011) Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6:e24570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 311975. This publication reflects the views only of the author, and the European Union cannot be held responsible for any use which may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Overmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Overmann, J., Lepleux, C. (2016). Marine Bacteria and Archaea: Diversity, Adaptations, and Culturability. In: Stal, L., Cretoiu, M. (eds) The Marine Microbiome. Springer, Cham. https://doi.org/10.1007/978-3-319-33000-6_2

Download citation

Publish with us

Policies and ethics