Skip to main content

On the Quality of Some Root-Bounds

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

Abstract

Bounds for the maximum modulus of all positive (or all complex) roots of a polynomial are a fundamental building block of algorithms involving algebraic equations. We apply known results to show which are the salient features of the Lagrange (real) root-bound as well as the related bound by Fujiwara. For a polynomial of degree n, we construct a bound of relative overestimation at most 1.72n which overestimates the Cauchy root by a factor of two at most. This can be carried over to the bounds by Kioustelidis and Hong. Giving a very short variant of a recent proof presented by Collins, we sketch a way to further definite, measurable improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batra, P.: A property of the nearly optimal root-bound. J. Comput. Appl. Math. 167(2), 489–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batra, P., Sharma, V.: Bounds on absolute positiveness of multivariate polynomials. J. Symb. Comput. 45(6), 617–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burr, M.A., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation algorithm. J. Symb. Comput. 47(2), 153–166 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Collins, G.E.: Krandick’s proof of Lagrange’s real root bound claim. J. Symb. Comput. 70, 106–111 (2015)

    Article  MATH  Google Scholar 

  5. Collins, G.E.: Continued fraction real root isolation using the Hong bound. J. Symb. Comput. 72, 21–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Collins, G.E., Krandick, W.: On the computing time of the continued fractions method. J. Symb. Comput. 47(11), 1372–1412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dieudonné, J.: La théorie analytique des polynômes d’une variable (à coefficients quelconques). Gauthier-Villars, Paris (1938)

    MATH  Google Scholar 

  8. Fujiwara, M.: Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung. Tôhoku Math. J. 10, 167–171 (1916)

    MATH  Google Scholar 

  9. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb. Comput. 25(5), 571–585 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kioustelidis, J.B.: Bounds for positive roots of polynomials. J. Comput. Appl. Math. 16(2), 241–244 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lagrange, J.-L.: Sur la résolution des équations numériques. In: Mémoires de l’Académie royale des Sciences et Belles-lettres de Berlin, t. XXIII, pp. 539–578 (1769)

    Google Scholar 

  12. Marden, M.: Geometry of Polynomials. AMS Mathematical Surveys 3, 2nd edn. AMS, Providence, Rhode Island (1966)

    MATH  Google Scholar 

  13. Mehlhorn, K., Ray, S.: Faster algorithms for computing Hong’s bound on absolute positiveness. J. Symb. Comput. 45(6), 677–683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ostrowski, A.: Solution of Equations in Euclidean and Banach Spaces, 3rd edn. Academic Press, New York (1973)

    MATH  Google Scholar 

  15. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  16. Runge, C.: Separation und Approximation der Wurzeln. In: Encyklopädie der mathematischen Wissenschaften, vol. 1, pp. 404–448. Verlag Teubner, Leipzig (1899)

    Google Scholar 

  17. Sagraloff, M.: On the complexity of the Descartes method when using approximate arithmetic. J. Symb. Comput. 65, 79–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sharma, V.: Complexity of real root isolation using continued fractions. Theor. Comput. Sci. 409(2), 292–310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Specht, W.: Algebraische Gleichungen mit reellen oder komplexen Koeffizienten. In: Enzyklopädie der mathematischen Wissenschaften, Band I, Heft 3, Teil II. B.G. Teubner Verlagsgesellschaft, Stuttgart. Zweite, völlig neubearbeitete Auflage (1958)

    Google Scholar 

  20. van der Sluis, A.: Upperbounds for roots of polynomials. Numer. Math. 15, 250–262 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Batra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Batra, P. (2016). On the Quality of Some Root-Bounds. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics