Skip to main content

Robotics for Education

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

Educational robotics programs have become popular in most developed countries and are becoming more and more prevalent in the developing world as well. Robotics is used to teach problem solving, programming, design, physics, math and even music and art to students at all levels of their education. This chapter provides an overview of some of the major robotics programs along with the robot platforms and the programming environments commonly used. Like robot systems used in research, there is a constant development and upgrade of hardware and software – so this chapter provides a snapshot of the technologies being used at this time. The chapter concludes with a review of the assessment strategies that can be used to determine if a particular robotics program is benefitting students in the intended ways.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAAI:

Association for the Advancement of Artificial Intelligence

ASD:

autism spectrum disorder

BEST:

boosting engineering science and technology

CIP:

Children’s Innovation Project

DC:

direct current

ECER:

European Conference on Educational Robotics

FIRST:

For Inspiration and Recognition of Science and Technology

GCER:

Global Conference on Educational Robotics

GUI:

graphical user interface

HCI:

human–computer interaction

I/O:

input/output

ICT:

information and communication technology

IDE:

integrated development environment

IEEE:

Institute of Electrical and Electronics Engineers

IR:

infrared

KIPR:

KISS Institute for Practical Robotics

LED:

light-emitting diode

MAZE:

Micro robot maze contest

MBARI:

Monterey Bay Aquarium Research Institute

ME:

mechanical engeneering

MHS:

International Symposium on Micro Mechatronics and Human Science

NASA:

National Aeronautics and Space Agency

PC:

personal computer

PVC:

polyvinyl chloride

RAM:

random access memory

RC:

radio control

ROV:

remotely operated vehicle

STEM:

science, technology, engineering and mathematics

TCFFHRC:

Trinity College’s Firefighting Robot Contest

USB:

universal serial bus

References

  1. KIPR: Botball robotics education, http://www.botball.org (2009)

  2. R. Manseur: Hardware competitions in engineering education, Front.Educ. Conf., Vol. 2 (2000), pp. F3C/5–F3C/8

    Google Scholar 

  3. Robo Cup Junior: http://rcj.robocup.org (2013)

  4. C. Stein: Botball: Autonomous students engineering autonomous robots, Comput.Educ. J. 13(2), 72–80 (2003)

    Google Scholar 

  5. FIRST: FIRST, http://www.usfirst.org/ (2006)

  6. R. Siegwart: Grasping the interdisciplinarity of mechatronics, IEEE Robotics Autom. Mag. 8(2), 27–34 (2001)

    Article  Google Scholar 

  7. R.D. Beer, H.J. Chiel, R.F. Drushel: Using autonomous robotics to teach science and engineering, Communication ACM 42(6), 85–92 (1999)

    Article  Google Scholar 

  8. A. Billard: Robota, clever toy and educational tool, RoboticsAuton. Syst. 42, 259–269 (2003)

    Article  MATH  Google Scholar 

  9. P. Coppin: Eventscope: A telescience interface for internet-based education, Proc. SPIE Telemanipulator Telepresence Technol., Vol. 8 (2002)

    Google Scholar 

  10. B. Fagin: Ada/mindstorms 3.0, IEEE RoboticsAutom. Mag. 10(2), 19–24 (2003)

    Article  Google Scholar 

  11. R.S. Hobson: The changing face of classroom instructional methods: service learning and design in a robotics course, IEEE Front. Educ. Conf., Kansas City, Vol. 2 (2000), pp. F3C/20–F3C/25

    Google Scholar 

  12. D. Kumar, L. Meeden: A robot laboratory for teaching artificial intelligence, ACM SIGCSE Bull. 30(1), 341–344 (1998)

    Article  Google Scholar 

  13. J. Schumacher, D. Welch, D. Raymod: Teaching introductory programming, problem solving and information technology with robots at West Point, Proc. IEEE 31st Front.Educ. Conf., Vol. 2 (2001)

    Google Scholar 

  14. E. Wang: Teaching freshmen design, creativity and programming with legos and labview, IEEE Front.Educ. Conf. (2001), pp. F3G–11–15

    Google Scholar 

  15. U. Wolz: Teaching design and project management with lego RCX robots, ACM SIGCSE Bull. 33(1), 95–99 (2001)

    Article  Google Scholar 

  16. J.K. Archibald, R.W. Beard: Goal! robot soccer for undergraduate students, IEEE Robotics Autom. Mag. 11(1), 70–75 (2004)

    Article  Google Scholar 

  17. A. Gage, R.R. Murphy: Principles and experiences in using legos to teach behavioural robotics, IEEE 33rd Front.Educ. Conf., Sarasota, Vol. 2 (2003)

    Google Scholar 

  18. E. Kolberg, N. Orlev: Robotics learning as a tool for integrating science technology curriculum in K-12 schools, IEEE Front.Educ. Conf., Vol. 1 (2001), pp. T2E–12–13

    Google Scholar 

  19. B.A. Maxwell, L. Meeden: Integrating robotics research with undergraduate education, IEEE Intell. Syst. 15(6), 22–27 (2000)

    Article  Google Scholar 

  20. A. Nagchaudhuri, G. Singh, M. Kaur, S. George: Lego robotics products boost student creativity in precollege programs at UMES, Front. Educ. Conf. (2002) p. 3,S4D–1–S4D–6

    Google Scholar 

  21. C. Stein, K. Nickerson: Botball robotics and gender differences in middle school teams, Proc.ASEE Annu. Conf., Salt Lake City (2004)

    Google Scholar 

  22. J.B. Weinberg, J.C. Pettibone, S.L. Thomas, M.L. Stephen, C. Stein: The impact of robot projects on girls’ attitudes toward science and engineering, Proc. RSS RoboticsEduc. Workshop, Atlanta (2007)

    Google Scholar 

  23. T. Fong, I. Nourbakhsh, K. Dautenhahn: A survey of socially interactive robots, RoboticsAutom. Syst. 42(3), 143–166 (2003)

    Article  MATH  Google Scholar 

  24. F. Martin, B. Mikhak, M. Resnick, B. Silverman, R. Berg: To mindstorms and beyond: Evolution of a construction kit for magical machines. In: Robots for Kids, ed. by A. Druin, J. Hendler (Morgan Kaufmann, San Francisco 2000) pp. 10–32

    Google Scholar 

  25. M. Cooper, D. Keating, W. Harwin, K. Dautenhahn: Robots in the Classroom – Tools for Accessible Education (IOS, Amsterdam 1999)

    Google Scholar 

  26. C. Pomalaza-Raez, B.H. Groff: Retention 101: Where robots go … students follow, J. Eng. Educ. 92(1), 85–90 (2003)

    Article  Google Scholar 

  27. KIPR: Open autonomous robotics game, http://www.kipr.org/kipr-open (2013)

  28. R.R. Murphy: Using robot competitions to promote intellectual development, AI Magazine 21(1), 77–90 (2000)

    Google Scholar 

  29. D.P. Miller, C. Stein: So that’s what Pi is for! And other Educational Epiphanies from Hands-on Robotics. In: Robots for Kids, ed. by A. Druin, J. Hendler (Morgan Kaufmann, San Francisco 2000) pp. 219–243

    Google Scholar 

  30. I. Vernor, D. Ahlgren, D.P. Miller: Olympiads: A new means to integrate theory and practice in robotics, Proc. ASEE Natl. Conf. (2006)

    Google Scholar 

  31. NASA Robotics Alliance Project: Education matrix, http://robotics.nasa.gov/edu/matrix.php (2006)

  32. 6.270 Organizers: The history of 6.270 – MIT’s autonomous robot design competition, http://web.mit.edu/6.270/www/about/history.html (MIT, Cambridge 2005)

  33. BEST Robotics: Middle and high school robotics competition, http://www.bestinc.org/MVC/ (BEST Robotics Inc., Auburn 2006)

  34. D. Ahlgren: Trinity college fire fighting home robot contest, http://www.trincoll.edu/events/robot/ (Trinity College, Hartford 2006)

  35. Fuji Soft ABC, Inc.: Fsi-all japan robot-sumo tournament, http://www.fsi.co.jp/sumo-e/ (2006)

  36. IMRMC Organizers: International micro robot maze contest, http://imd.eng.kagawa-u.ac.jp/maze/ (2012)

  37. Seaperch: http://www.seaperch.org/

  38. RoboCup Federation: http://www.robocup.org/

  39. Robotics Education & Competition Foundation: http://www.roboticseducation.org/vex-robotics-competitionvrc/ (2012)

  40. D. Nardi, M. Riedmiller, C. Sammut, J. Santos-Victor (Eds.): RoboCup 2004: Robot Soccer World Cup VIII, Lecture Notes in Computer Science, Vol. 3276 (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  41. R. Tucker: Balch, Holly A. Yanco: Ten years of the AAAI mobile robot competition and exhibition, AI Magazine 23(1), 13–22 (2002)

    Google Scholar 

  42. Robot Challenge: http://www.robotchallenge.org (2013)

  43. KIPR: Global conference on educational robotics, http://kipr.org/gcer (2013)

  44. D.P. Miller: Robot contests at GCER 2011, IEEE RoboticsAutom. Mag. 18(4), 10–12 (2011)

    Article  Google Scholar 

  45. PRIA: European conference on educational robotics, http://ecer13.pria.at (2013)

  46. Honda: Asimo: The world’s most advanced humanoid robot, http://asimo.honda.com

  47. iCub.org: An open source cognitive humanoid robotics platform, http://www.icub.org

  48. Willow arage: Pr2 overview, http://www.willowgarage.com/pages/pr2/overview

  49. Parallax Inc.: The scribbler 2, http://www.parallax.com/go/s2 (2012)

  50. LOGO Foundation: A logo primer or what’s with the turtle, http://el.media.mit.edu/logo-foundation/logo/turtle.html (2000)

  51. V. Asper, W. Smith, C. Lee, J. Gobat, K. Heywood, B. Queste, M. Dinniman: Using gliders to study a phytoplankton bloom in the ross sea, antarctica, IEEE OCEANS (2011) pp. 1–7

    Google Scholar 

  52. C.M. Clark, C.S. Olstad, K. Buhagiar, T. Gambin: Archaeology via underwater robots: Mapping and localization within maltese cistern systems, IEEE 10th Int. Conf. Control Autom. Robotics Vis. (ICARCV) (2008) pp. 662–667

    Google Scholar 

  53. M. Theberge, G. Dudek: Gone swimmin' (seagoing robots), IEEE Spectrum 43(6), 38–43 (2006)

    Article  Google Scholar 

  54. MBARI: Build your own ROV, http://www.mbari.org/education/rov/

  55. S.W. Moore, H. Bohm, V. Jensen: Underwater Robotics: Science, Design & Fabrication (MATEU, Monterey 2010)

    Google Scholar 

  56. Marine Tech: Marine tech – ROV competition, http://www.marinetech.org/rov-competition/ (2013)

  57. F. Gudaitis: The first days of RC, Model Airplane News, April (2011)

    Google Scholar 

  58. AIAA: Student design-build-fly competition, http://www.aiaadbf.org (2013)

  59. Speedfest: http://speedfest.okstate.edu (2013)

  60. R. Mahony, V. Kumar, P. Corke: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, IEEE Robotics Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  61. S. Lupashin, A. Schöllig, M. Sherback, R. D’Andrea: A simple learning strategy for high-speed quadrocopter multi-flips, IEEE Int. Conf.RoboticsAutom. (ICRA) (2010), pp 1642 –1648

    Google Scholar 

  62. J. Meyer: A low cost, vision based micro helicopter system for education and control experiments, Master’s Thesis (Univ. of Oklahoma School of Aerospace & Mechanical Engineering, Norman 2014)

    Google Scholar 

  63. J.L. Jones, A.M. Flynn: Mobile Robots: Inspiration to Implementation (Peters, Natick 1993)

    MATH  Google Scholar 

  64. Parallax Inc.: BASIC stamps, http://www.parallax.com/html_pages/products/basicstamps/basic_stamps.asp

  65. J. Lahart: Taking an open-source approach to hardware, The Wall Street Journal, November 27 (2009)

    Google Scholar 

  66. C. Anderson: The future of arduino, http://diydrones.com/profiles/blogs/the-future-of-arduino

  67. KIPR: Link, http://www.kipr.org/products/link (2013)

  68. D.P. Miller, M. Oelke, M.J. Roman, J. Villatoro, C.N. Winton: The cbc: A linux-based low-cost mobile robot controller, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2010)

    Google Scholar 

  69. G. Mitsuoka: CBC v2 controller: Brings ease of use as well as speed, power and vision to small robots, Robot Mag. 29, 82–85 (2011)

    Google Scholar 

  70. D. Shiffman: Interview with Casey Reas and Ben Fry, http://rhizome.org/editorial/2009/sep/23/interview-with-casey-reas-and-ben-fry/ (2009)

  71. H. Barragán, B. Hagman, A. Brevig: Wiring, http://wiring.org.co (2011)

  72. B.J. Duch, S.E. Groh, D.E. Allen: Why problem-based learning. In: The Power of Problem-Based Learning, ed. by B.J. Duch, S.E. Groh, D.E. Allen (Wiley, New York 2011) pp. 3–11

    Google Scholar 

  73. H.A. Yanco, H.J. Kim, F. Martin, L. Silka: Artbotics: Combining art and robotics to broaden participation in computing, Proc. AAAI Spring Symp. Robots Robot Venues, Stanford (2007)

    Google Scholar 

  74. F. Martin, G. Greher, J. Heines, J. Jeffers, H.J. Kim, S. Kuhn, K. Roehr, N. Selleck, L. Silka, H. Yanco: Joining computing and the arts at a mid-size university, J.Comput. Sci.Coll. 24(6), 87–94 (2009)

    Google Scholar 

  75. E. Hamner, T. Lauwers, D. Bernstein, I. Nourbakhsh, C. DiSalvo: Robot diaries: Broadening participation in the computer science pipeline through social technical exploration, AAAI Spring Symp.Using AI to Motiv. Gt. Particip.Comput. Sci. (2008)

    Google Scholar 

  76. A. Renkl: Worked-out examples: Instructional explanations support learning by self-explanations, Learn.Instr. 12(5), 529–556 (2002)

    Article  Google Scholar 

  77. J.M. Wing: Computational thinking, Communication ACM 49(3), 33–35 (2006)

    Article  Google Scholar 

  78. J. Countryman, A. Feldman, L. Kekelis, E. Spertus: Developing a hardware and programming curriculum for middle school girls, ACM SIGCSE Bull. 34(2), 44–47 (2002)

    Article  Google Scholar 

  79. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, Y. Kafai: Scratch: Programming for all, Communication ACM 52(11), 60–67 (2009)

    Article  Google Scholar 

  80. J. Mönig, B. Harvey: Build your own blocks (Univ. of California, Berkeley 2010)

    Google Scholar 

  81. W.P. Dann, S. Cooper, R. Pausch: Learning to Program with Alice (Prentice Hall, Upper Saddle River 2011)

    Google Scholar 

  82. T. Lauwers, I. Nourbakhsh: Designing the finch: Creating a robot aligned to computer science concepts, AAAI 1st Symp.Educ. Adv.Artif. Intell. (2010)

    Google Scholar 

  83. T. Lauwers, E. Hamner, I. Nourbakhsh: A strategy for collaborative outreach: Lessons from the csbots project, Proc. 41st ACM Tech. Symp.Comput. Sci. Educ. (2010) pp. 315–319

    Chapter  Google Scholar 

  84. E.A. Vandewater, V.J. Rideout, E.A. Wartella, X. Huang, J.H. Lee, M. Shim: Digital childhood: Electronic media and technology use among infants, toddlers, and preschoolers, Pediatrics 119(5), e1006–e1015 (2007)

    Article  Google Scholar 

  85. C. Renaud, B. Wagoner: The gamification of learning, Princ. Leadersh. 12(1), 56–59 (2011)

    Google Scholar 

  86. R. Zevenbergen: Digital natives come to preschool: Implications for early childhood practice, Contemp. IssuesEarly Child. 8(1), 19–29 (2007)

    Article  Google Scholar 

  87. J. Nielsen: Heuristic evaluation, Usability Insp. Methods 24, 413 (1994)

    Google Scholar 

  88. S.A. Cohen: Instructional alignment: Searching for a magic bullet, Educ. Res. 16(8), 16–20 (1987)

    Article  Google Scholar 

  89. T. Lauwwers: Aligning Capabilities of Interactive Educational Tools to Learner Goals, Ph.D. Thesis (Carnegie Mellon Univ., Pittsburgh 2010)

    Google Scholar 

  90. S. Allen: Looking for learning in visitor talk: A methodological exploration. In: Learning Conversations in Museums, ed. by G. Leinhardt, K. Crowley, K. Knutson (Lawrence Erlbaum, Mahwah 2002) pp. 59–303

    Google Scholar 

  91. K. Crowley, M. Callanan: Describing and supporting collaborative scientific thinking in parent-child interactions, J. Mus. Educ. 23(1), 12–17 (1998)

    Article  Google Scholar 

  92. K. Crowley, M.A. Callanan, J.L. Jipson, J. Galco, K. Topping, J. Shrager: Shared scientific thinking in everyday parent-child activity, Sci. Educ. 85(6), 712–732 (2001)

    Article  Google Scholar 

  93. G. Leinhardt, K. Crowley: Objects of learning, objects of talk: Changing minds in museums. In: Perspectives on Object-Centered Learning in Museums, ed. by S.G. Paris (Lawrence Erlbaum, Mahwah 2002) pp. 301–324

    Google Scholar 

  94. I. Nourbakhsh, E. Hamner, E. Ayoob, E. Porter, B. Dunlavey, D. Bernstein, K. Crowley, M. Lotter, S. Shelly, T. Hsiu, E. Porter, B. Dunlavey, D. Clancy: The personal exploration rover: Educational assessment of a robotic exhibit for informal learning venues, Int. J.Eng. Educ. 22(4), 777–791 (2006)

    Google Scholar 

  95. M.U. Bers, A.B. Ettinger: Programming robots in kindergarten to express identity: An ethnographic analysis. In: Robots inK-12 Education, ed. by B.S. Barker (Information Science Refernce, Hershey 2012) p. 168

    Chapter  Google Scholar 

  96. I.R. Nourbakhsh, K. Crowley, A. Bhave, E. Hamner, T. Hsiu, A. Perez-Bergquist, S. Richards, K. Wilkinson: The robotic autonomy mobile robotics course, Auton. Robots 18(1), 103–127 (2005)

    Article  Google Scholar 

  97. A. Druin, J. Hendler (Eds.): Robots for Kids: Exploring New Technologies for Learning (Morgan Kaufmann, Boston 2000)

    Google Scholar 

  98. F.G. Martin: Robotic Explorations: A Hands-on Introduction to Engineering (Prentice Hall, Upper Saddle River 2000)

    Google Scholar 

  99. P. Dourish: Where the Action Is: The Foundations of Embodied Interaction (MIT Press, Cambridge 2004)

    Google Scholar 

  100. B.J. Wadsworth: Piaget's theory of Cognitive and Affective Development: Foundations of Constructivism (Longman, New York 1996)

    Google Scholar 

  101. B. Laurel: Computers as Theatre (Addison-Wesley, Reading 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Miller .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Hampton robotics club available from http://handbookofrobotics.org/view-chapter/79/videodetails/239

:

Elementary robotics challenge: Soldier Creek Elementaryavailable from http://handbookofrobotics.org/view-chapter/79/videodetails/240

:

Global Conference on Educational Robotics & International Botball Tournamentavailable from http://handbookofrobotics.org/view-chapter/79/videodetails/241

:

Autonomous aerial vehicle carrier landing contest (2001) available from http://handbookofrobotics.org/view-chapter/79/videodetails/633

:

SeaPerch Challenge 2014 ’The Heist’ available from http://handbookofrobotics.org/view-chapter/79/videodetails/634

:

New Mexico elementary botball 2014 – Teagan’s first ever run available from http://handbookofrobotics.org/view-chapter/79/videodetails/635

:

Robotics summer camps – PRIA available from http://handbookofrobotics.org/view-chapter/79/videodetails/636

:

World robot olympiad Japan 2014 available from http://handbookofrobotics.org/view-chapter/79/videodetails/637

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, D.P., Nourbakhsh, I. (2016). Robotics for Education. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics