Skip to main content

Modeling and Control of Wheeled Mobile Robots

  • Chapter
  • First Online:
Springer Handbook of Robotics

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter may be seen as a follow up to Chap. 24, devoted to the classification and modeling of basic wheeled mobile robot (GlossaryTerm

WMR

) structures, and a natural complement to Chap. 47, which surveys motion planning methods for WMRs. A typical output of these methods is a feasible (or admissible) reference state trajectory for a given mobile robot, and a question which then arises is how to make the physical mobile robot track this reference trajectory via the control of the actuators with which the vehicle is equipped. The object of the present chapter is to bring elements of the answer to this question based on simple and effective control strategies.

The chapter is organized as follows. Section 49.2 is devoted to the choice of control models and the determination of modeling equations associated with the path-following control problem. In Sect. 49.3, the path following and trajectory stabilization problems are addressed in the simplest case when no requirement is made on the robot orientation (i. e., position control). In Sect. 49.4 the same problems are revisited for the control of both position and orientation. The previously mentionned sections consider an ideal robot satisfying the rolling-without-sliding assumption. In Sect. 49.5, we relax this assumption in order to take into account nonideal wheel-ground contact. This is especially important for field-robotics applications and the proposed results are validated through full scale experiments on natural terrain. Finally, a few complementary issues on the feedback control of mobile robots are briefly discussed in the concluding Sect. 49.6 , with a list of commented references for further reading on WMRs motion control.

figure a

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

4-D:

four-dimensional

DOF:

degree of freedom

GPS:

global positioning system

IMU:

inertial measurement unit

RTK:

real-time kinematics

SUGV:

small unmanned ground vehicle

WMR:

wheeled mobile robot

References

  1. M. Buehler, K. Iagnemma, S. Sanjiv (Eds.): The 2005 DARPA Grand Challenge: The Great Robot Race, Springer Tracts in Advanced Robotics, Vol. 36 (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  2. P. Morin, C. Samson: Motion control of wheeled mobile robots. In: Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Berlin, Heidelberg 2008) pp. 799–826

    Chapter  Google Scholar 

  3. R.W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, ed. by R.W. Brockett, R.S. Millman, H.J. Sussmann (Birkhäuser, Boston 1983)

    Google Scholar 

  4. C. Samson: Velocity and torque feedback control of a nonholonomic cart, Lect. Notes Control Inform. Sci. 162, 125–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-M. Coron: Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Syst. 5, 295–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Samson: Control of chained systems. Application to path following and time-varying point-stabilization, IEEE Trans. Autom. Control 40, 64–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Morin, C. Samson: Control of non-linear chained systems. From the Routh–Hurwitz stability criterion to time-varying exponential stabilizers, IEEE Trans. Autom. Control 45, 141–146 (2000)

    Article  MATH  Google Scholar 

  8. D.A. Lizárraga: Obstructions to the existence of universal stabilizers for smooth control systems, Math. Control Signals Syst. 16, 255–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Morin, C. Samson: Practical stabilization of driftless systems on Lie groups: the transverse function approach, IEEE Trans. Autom. Control 48, 1496–1508 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Morin, C. Samson: A characterization of the Lie algebra rank condition by transverse periodic functions, SIAM J. Control Optim. 40(4), 1227–1249 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Artus, P. Morin, C. Samson: Control of a maneuvering mobile robot by transverse functions, Symp. Adv. Robot Kinemat. (ARK) (2004) pp. 459–468

    Chapter  Google Scholar 

  12. G. Artus, P. Morin, C. Samson: Tracking of an omnidirectional target with a nonholonomic mobile robot, IEEE Conf. Adv. Robotics (ICAR) (2003) pp. 1468–1473

    Google Scholar 

  13. P. Morin, C. Samson: Trajectory tracking for non-holonomic vehicles: overview and case study, Proc. 4th Int. Workshop Robot Motion Control (RoMoCo), ed. by K. Kozlowski (2004) pp. 139–153

    Google Scholar 

  14. R. Lenain, B. Thuilot, C. Cariou, P. Martinet: High accuracy path tracking for vehicles in presence of sliding. application to farm vehicle automatic guidance for agricultural tasks, Auton. Robots 21(1), 79–97 (2006)

    Article  Google Scholar 

  15. T.D. Gillespie: Fundamentals of Vehicle Dynamics (SAE, Warrendale 1992)

    Book  Google Scholar 

  16. P.R. Dahl: Solid friction damping of mechanical vibrations, AIAA J. 14(12), 1675–1682 (1976)

    Article  Google Scholar 

  17. C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky: A new model for control of systems with friction, IEEE Trans.Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Canudas de Wit, P. Tsiotras: Dynamic tire friction models for vehicle traction control, Proc. 38th IEEE Conf.Decis.Control, Vol. 4 (1999)

    Google Scholar 

  19. E. Bakker, L. Nyborg, H.B. Pacejka: Tyre modeling for use in vehicle dynamics studies, International Conference of the Society of Automotive Engineers (SAE) (1987) pp. 2190–2204

    Google Scholar 

  20. H.B. Pacejka: Tyre and Vehicle Dynamics (Butterworth-Heinemann, Oxford 2002)

    Google Scholar 

  21. R. Lenain, B. Thuilot, C. Cariou, P. Martinet: Mixed kinematic and dynamic sideslip angle observer for accurate control of fast off-road mobile robots, J.Field Robotics 27(2), 181–196 (2010)

    MATH  Google Scholar 

  22. O.J. Sørdalen: Conversion of the kinematics of a car with n trailers into a chained form, IEEE Int. Conf. Robot. Autom. (ICRA) (1993) pp. 382–387

    Google Scholar 

  23. P. Rouchon, M. Fliess, J. Lévine, P. Martin: Flatness, motion planning and trailer systems, IEEE Int. Conf. Decis. Control (1993) pp. 2700–2705

    Google Scholar 

  24. P. Bolzern, R.M. DeSantis, A. Locatelli, D. Masciocchi: Path-tracking for articulated vehicles with off-axle hitching, IEEE Trans. Control Syst. Technol. 6, 515–523 (1998)

    Article  Google Scholar 

  25. D.A. Lizárraga: Contributions à la Stabilisation des Systèmes Non-Linéaires et à la Commande de Véhicules Sur Roues, Ph.D. Thesis (INRIA-INPG, University of Grenoble, Grenoble 2000)

    Google Scholar 

  26. C. Altafini: Path following with reduced off-tracking for multibody wheeled vehicles, IEEE Trans. Control Syst. Technol. 11, 598–605 (2003)

    Article  Google Scholar 

  27. F. Lamiraux, J.-P. Laumond: A practical approach to feedback control for a mobile robot with trailer, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1998) pp. 3291–3296

    Google Scholar 

  28. D.A. Lizárraga, P. Morin, C. Samson: Chained form approximation of a driftless system. Application to the exponential stabilization of the general N-trailer system, Int. J. Control 74, 1612–1629 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Venditelli, G. Oriolo: Stabilization of the general two-trailer system, IEEE Int. Conf. Robotics Autom. (ICRA) (2000) pp. 1817–1823

    Google Scholar 

  30. M. Maya-Mendez, P. Morin, C. Samson: Control of a nonholonomic mobile robot via sensor-based target tracking and pose estimation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 5612–5618

    Google Scholar 

  31. D. Wang, C.B. Low: An analysis of wheeled mobile robots in the presence of skidding and slipping: Control design perspective, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2007) pp. 2379–2384

    Google Scholar 

  32. G. Campion, G. Bastin, B. d'Andréa-Novel: Structural properties and classification of kynematic and dynamic models of wheeled mobile robots, IEEE Trans. Robotics Autom. 12, 47–62 (1996)

    Article  Google Scholar 

  33. C. Cariou, R. Lenain, M. Berducat, B. Thuilot: Autonomous maneuvers of a farm vehicle with a trailed implement in headland, Proc. 7th Int. Conf.Inform. Control Autom. Robotics (ICINCO), Vol. 2 (2010) pp. 109–114

    Google Scholar 

  34. K. Iagnemma, S. Shimoda, Z. Shiller: Near-optimal navigation of high speed mobile robots on uneven terrain, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2008) pp. 4098–4103

    Google Scholar 

  35. N. Bouton, R. Lenain, B. Thuilot, P. Martinet: A new device dedicated to autonomous mobile robot dynamic stability: application to an off-road mobile robot, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2010) pp. 3813–3818

    Google Scholar 

  36. O. Hach, R. Lenain, B. Thuilot, P. Martinet: Avoiding steering actuator saturation in off-road mobile robot path tracking via predictive velocity control, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2011) pp. 5523–5528

    Google Scholar 

  37. E. Lucet, C. Grand, D. Salle, P. Bidaud: Stabilization algorithm for a high speed car-like robot achieving steering maneuver, Proc. IEEE Int. Conf.RoboticsAutom. (ICRA) (2008) pp. 2540–2545

    Google Scholar 

  38. M. Krid, F. Ben-Amar: Design and control of an active anti-roll system for a fast rover, IEEE/RSJ Int. Conf.Intell. RobotsSyst. (IROS) (2011) pp. 274–279

    Google Scholar 

  39. C. Canudas de Wit, B. Siciliano, G. Bastin (Eds.): Theory of Robot Control (Springer, Berlin, Heidelberg 1996)

    MATH  Google Scholar 

  40. J.-P. Laumond (Ed.): Robot Motion Planning and Control, Lecture Notes in Control and Information Sciences, Vol. 229 (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  41. Y.F. Zheng (Ed.): Recent Trends in Mobile Robots, World Scientific Series in Robotics and Automated Systems, Vol. 11 (World Scientific, Singapore 1993)

    MATH  Google Scholar 

  42. R.M. Murray, S.S. Sastry: Steering nonholonomic systems in chained form, IEEE Int. Conf. Decis. Control (1991) pp. 1121–1126

    Google Scholar 

  43. E.D. Dickmanns, A. Zapp: Autonomous high speed road vehicle guidance by computer vision, Proc. IFAC 10th World Congr. Autom. Control. (1987)

    Google Scholar 

  44. W.L. Nelson, I.J. Cox: Local path control for an autonomous vehicle, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1998) pp. 1504–1510

    Google Scholar 

  45. C. Samson: Path following and time-varying feedback stabilization of a wheeled mobile robot, Proc. Int. Conf. Autom. Robotics Comput. Vis. (1992)

    Google Scholar 

  46. B. d'Andréa-Novel, G. Campion, G. Bastin: Control of nonholonomic wheeled mobile robots by state feedback linearization, Int. J. Robotics Res. 14, 543–559 (1995)

    Article  MATH  Google Scholar 

  47. A. De Luca, M.D. Di Benedetto: Control of nonholonomic systems via dynamic compensation, Kybernetica 29, 593–608 (1993)

    MathSciNet  MATH  Google Scholar 

  48. M. Fliess, J. Lévine, P. Martin, P. Rouchon: Flatness and defect of non-linear systems: Introductory theory and examples, Int. J. Control 61, 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. I. Kolmanovsky, N.H. McClamroch: Developments in nonholonomic control problems, IEEE Control Syst. 15, 20–36 (1995)

    Article  Google Scholar 

  50. P. Morin, J.-B. Pomet, C. Samson: Developments in time-varying feedback stabilization of nonlinear systems, IFAC Nonlinear Control Syst. Design Symp. (1998) pp. 587–594

    Google Scholar 

  51. J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Syst. Control Lett. 18, 467–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. A.R. Teel, R.M. Murray, G. Walsh: Nonholonomic control systems: from steering to stabilization with sinusoids, Int. J. Control 62, 849–870 (1995)

    Article  MATH  Google Scholar 

  53. R.T. M'Closkey, R.M. Murray: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Trans. Autom. Control 42, 614–6128 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. M.K. Bennani, P. Rouchon: Robust stabilization of flat and chained systems, Eur. Control Conf. (1995) pp. 2642–2646

    Google Scholar 

  55. P. Lucibello, G. Oriolo: Stabilization via iterative state feedback with application to chained-form systems, IEEE Conf. Decis. Control (1996) pp. 2614–2619

    Google Scholar 

  56. O.J. Sørdalen, O. Egeland: Exponential stabilization of nonholonomic chained systems, IEEE Trans. Autom. Control 40, 35–49 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Morin, C. Samson: Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics, ESAIM Control Optim. Calc. Var. 4, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Astolfi: Discontinuous control of nonholonomic systems, Syst. Control Lett. 27, 37–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. C. Canudas de Wit, O.J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Trans. Autom. Control 37(11), 1791–1797 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Samson .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Tracking of an admissible trajectory with a car-like vehicle available from http://handbookofrobotics.org/view-chapter/49/videodetails/181

:

Tracking of arbitrary trajectories with a truck-like vehicle available from http://handbookofrobotics.org/view-chapter/49/videodetails/182

:

Tracking of an omnidirectional frame with a unicycle-like robot available from http://handbookofrobotics.org/view-chapter/49/videodetails/243

:

Mobile robot control in off-road condition and under high dynamics available from http://handbookofrobotics.org/view-chapter/49/videodetails/435

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Samson, C., Morin, P., Lenain, R. (2016). Modeling and Control of Wheeled Mobile Robots. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics