Skip to main content

Analysis of Cultivable Endophytic Bacteria in Roots of Maize in a Soil from León Province in Mainland Spain

  • Conference paper
  • First Online:
Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction

Abstract

In the present study, we isolated 14 bacterial strains from the roots of maize plants growing in a soil located at León (Spain). All these strains presented some of the following in vitro plant growth promotion mechanisms: (i) phosphate solubilization, (ii) ACC deaminase activity, (iii) siderophore and/or (iv) IAA production. These strains displayed 11 different RAPD profiles, showing they were genetically diverse. Representative strains from each RAPD type were identified on the basis of the 16S rRNA gene sequencing analysis, showing that most of them belonged to gamma-Proteobacteria and, specifically, to the families Enterobacteriaceae and Pseudomonadaceae (genus Pseudomonas). Most of the isolated strains belong to species that can be pathogenic for humans, such as Pantoea agglomerans, Pantoea ananatis, Lelliottia amnigena (formerly Enterobacter amnigenus), Kosakonia cowanii (formerly Enterobacter cowanii), Enterobacter ludwigii and Rahnella aquatilis, or for plants, such as Pseudomonas corrugata, Pseudomonas brassicacearum and Agrobacterium larrymoorei. These results showed the need of a correct identification of bacterial endophytes before selecting strains for the design of biofertilizers, which must be pathogen-free.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI et al (2007) Pseudomonas brassicacearum strain Am 3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Brady C, Cleenwerck I, Venter S et al (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319

    Article  PubMed  Google Scholar 

  • Capdevila JA, Bisbe V, Gasser I et al (1998) Enterobacter amnigenus: an unusual human pathogen. Enferm Infecc Microbiol Clin 16:364–366

    CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Coutinho TA, Venter SN (2009) Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 10:325–335

    Article  CAS  PubMed  Google Scholar 

  • De Baere T, Verhelst R, Labit C et al (2004) Bacteremic infection with Pantoea ananatis. J Clin Microbiol 42:4393–4395

    Article  PubMed  PubMed Central  Google Scholar 

  • De Maayer P, Chan WY, Rubagotti E et al (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genom 15:404

    Article  Google Scholar 

  • Furtado GQ, Guimarães LMS, Lisboa DO et al (2012) First report of enterobacter cowanii causing bacterial spot on Mabea fistulifera, a native forest species in Brazil. Plant Dis 96:1576

    Article  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield E (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gaitán JI, Bronze MS (2010) Infection caused by Rahnella aquatilis. Am J Med Sci 339:577–579

    Article  PubMed  Google Scholar 

  • García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffmann H, Stindl S, Stumpf A et al (2005) Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Syst Appl Microbiol 28:206–212

    Article  CAS  PubMed  Google Scholar 

  • Ikeda AC, Bassani LL, Adamoski D et al (2013) Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microb Ecol 65:154–160

    Article  PubMed  Google Scholar 

  • Inoue K, Sugiyama K, Kosako Y et al (2000) Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr Microbiol 41:417–420

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kuzdan C, Soysal A, Özdemir H et al (2015) Rahnella aquatilis sepsis in a premature newborn. Case Rep Pediatr 2015:860671

    PubMed  PubMed Central  Google Scholar 

  • Matsukura H, Katayama K, Kitano N et al (1996) Infective endocarditis caused by an unusual gram-negative rod, Rahnella aquatilis. Pediatr Cardiol 17:108–111

    Article  CAS  PubMed  Google Scholar 

  • O’Hara GW, Goss TJ, Dilworth MJ et al (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876

    PubMed  PubMed Central  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF et al (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E. (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulate chickpea in different Spanish soils. Plant Soil 287: 23–33

    Google Scholar 

  • Rivas R, García-Fraile P, Mateos PF et al (2007) Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Lett Appl Microbiol 44:181–187

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shubov A, Jagannathan P, Chin-Hong PV (2011) Pantoea agglomerans pneumonia in a heart-lung transplant recipient: case report and a review of an emerging pathogen in immunocompromised hosts. Transpl Infect Dis 13:536–539

    Article  CAS  PubMed  Google Scholar 

  • Solaiman DK, Ashby RD, Gunther NW et al (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Microbiol Biotechnol 99:4333–4342

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Beriha SS (2015) Pantoea species causing early onset neonatal sepsis: a case report. J Med Case Rep 9:188

    Article  PubMed  PubMed Central  Google Scholar 

  • Trantas EA, Licciardello G, Almeida NF et al (2015) Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front Microbiol 6:811

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Google Scholar 

  • Westerfeld C, Papaliodis GN, Behlau I, Durand ML, Sobrin L (2009) Enterobacter amnigenus endophthalmitis. Retin Cases Brief Rep 3:409–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Olsen GJ, Ibba M, Söll D (2000). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64(1):202–236

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Project AGL2013-48098-P from the MINECO (Spanish Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Menéndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Menéndez, E. et al. (2016). Analysis of Cultivable Endophytic Bacteria in Roots of Maize in a Soil from León Province in Mainland Spain. In: González-Andrés, F., James, E. (eds) Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction. Springer, Cham. https://doi.org/10.1007/978-3-319-32528-6_5

Download citation

Publish with us

Policies and ethics