Skip to main content

Drought Stress and Chromatin: An Epigenetic Perspective

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 2

Abstract

In the current scenario of growing world population, industrialization, and global warming, tackling drought stress in its entirety is a focus issue for plant scientists to devise strategies favoring plant growth under uncertain water regimes. The onset of stress leads to epigenetic alterations in the cell leading to a more closed/condensed state (heterochromatin) and repressed transcription. Such a stress response, often reversible is stored in the “stress memory” of the plant, and once favorable conditions return the cell again acquires an open/decondensed state and becomes transcriptionally active (euchromatin). In this chapter, we aim to enlighten readers with a comprehensive overview of how onset of drought stress affects changes in chromatin gene expression and how the prevailing molecular and physiological strategies can be entailed for chromatin-mediated drought tolerance in plants. Moreover, we apprise readers of the adaptive significance of transgenerational inheritance of DNA methylation patterns in plant drought tolerance. Lastly, we discuss future strategies for sustainable drought stress tolerance through transcriptional control of dehydration stress memory genes regulating dynamic chromatin structure and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. IPCC Secretariat, Geneva, p 210

    Google Scholar 

  2. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 3275967:812–818

    Article  CAS  Google Scholar 

  3. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 3275967:818–822

    Article  CAS  Google Scholar 

  4. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 616:1041–1052

    Article  CAS  Google Scholar 

  5. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gil-Quintana E, Larrainzar E, Seminario A, Diaz-Leal JL, Alamillo JM, Pineda M, Arrese-Igor C, Wienkoop S, Gonzalez EM (2013) Local inhibition of nitrogen fixation and nodule metabolismin drought-stressed soybean. J Exp Bot 64:2171–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 4:1264–1271

    Article  CAS  Google Scholar 

  8. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. J Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  9. Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 141:11–22

    Article  CAS  Google Scholar 

  10. Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 2012:3670–3685

    Article  Google Scholar 

  11. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  12. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 498:1135–1149

    Article  CAS  Google Scholar 

  13. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 122:107–118

    Article  CAS  Google Scholar 

  14. Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 507:1215–1231

    Article  CAS  Google Scholar 

  15. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  16. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 1176:721–733

    Article  Google Scholar 

  17. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 1224:517–527

    Article  CAS  Google Scholar 

  18. Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 2821–2:239–244

    Article  Google Scholar 

  19. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 1518:2343–2360

    Article  Google Scholar 

  20. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 3306004:622–627

    Article  CAS  Google Scholar 

  21. Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 911:883–890

    Article  CAS  Google Scholar 

  22. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, Bennett DA, Houmard JA, Muoio DM, Onder TT, Camahort R, Cowan CA, Meissner A, Epstein CB, Shoresh N, Bernstein BE (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 1523:642–654

    Article  CAS  Google Scholar 

  23. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  24. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 132:132–138

    Article  CAS  Google Scholar 

  25. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dong T, Park Y, Hwang I (2015) Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem 58:29–48

    Article  PubMed  Google Scholar 

  27. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  28. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  CAS  PubMed  Google Scholar 

  31. Han SK, Wagner D (2014) Role of chromatin in water stress responses in plants. J Exp Bot 6510:2785–2799

    Article  CAS  Google Scholar 

  32. Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 535:847–856

    Article  CAS  Google Scholar 

  33. Kim JM, To TK, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 4910:1580–1588

    Article  CAS  Google Scholar 

  34. Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 18192:129–136

    Article  CAS  Google Scholar 

  35. Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 63:3297–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Castel SE, Martienssen RA (2013) RNA interference in the nucleus:roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 162:71–84

    Article  CAS  Google Scholar 

  38. Wierzbicki AT (2012) The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  39. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, Reyes JL, Covarrubias AA (2012) Non-coding RNAs in the plant response to abiotic stress. Planta 236:943–958

    Article  CAS  PubMed  Google Scholar 

  41. Ding Y, Liu N, Virlouvet L, Riethoven JJ, Fromm M, Avramova Z (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 30(13):229

    Article  CAS  Google Scholar 

  42. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  43. Badeaux A, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224

    Article  CAS  PubMed Central  Google Scholar 

  44. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  45. Zhou BR, Feng H, Kato H, Dai L, Yang Y, Zhou Y, Bai Y (2013) Structural insights into the histone H1-nucleosome complex. Proc Natl Acad Sci U.S.A. 11048:19390–19395

    Article  CAS  Google Scholar 

  46. Zhou Y, Tan B, Luo M et al (2013) HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell 25:134–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petesch SJ, Lis JT (2012) Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12:554–564

    Article  CAS  PubMed  Google Scholar 

  49. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    Article  CAS  PubMed  Google Scholar 

  50. Ahmad A, Cao X (2012) Plant PRMTs broaden the scope of arginine methylation. J Genet Genomics 39:195–208

    Article  CAS  PubMed  Google Scholar 

  51. Pontvianne F, Blevins T, Pikaard CS (2010) Arabidopsis histone lysine methyltransferases. Adv Bot Res 53:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG, Roth SY, Allis CD. 1996 Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383:269–272

    Google Scholar 

  53. Zhang W, Bone JR, Edmondson DG, Turner BM, Roth SY. 1998. Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17:3155–3167

    Google Scholar 

  54. Shahbazian MD, Grunstein M. 2007. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 76:75–100

    Google Scholar 

  55. To TK, Kim JM, Matsui A, Kurihara Y, Morosawa T, Ishida J, Tanaka M, Endo T, Kakutani T, Toyoda T, Kimura H, Yokoyama S, Shinozaki K, Seki M (2011) Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genet 4:e1002055

    Article  CAS  Google Scholar 

  56. Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK (2007) Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE 211:e1210

    Article  CAS  Google Scholar 

  57. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications—writers that read. EMBO Rep 16(11):1467–1481

    Google Scholar 

  58. Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    PubMed  PubMed Central  Google Scholar 

  59. Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 5062:265–273

    Article  CAS  Google Scholar 

  60. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  61. Park SY, Fung P, Nishimura N et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid activated protein kinases in Arabidopsis. Proc Nat Acad Sci U.S.A. 106:17588–17593

    Article  CAS  Google Scholar 

  63. Singh A, Pandey A, Srivastava AK, Tran LP, Pandey GK (2015) Plant protein phosphatases 2C: from genomic diversity to functional multiplicity and importance in stress management. Crit Rev Biotechnol 18:1–13

    Article  CAS  Google Scholar 

  64. Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U.S.A. 106:8380–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    Article  CAS  PubMed  Google Scholar 

  66. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  CAS  PubMed  Google Scholar 

  67. Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signalling kinase-phosphatase pair. Proc Natl Acad Sci U.S.A. 106:21425–21430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee SC, Lan W, Buchanan BB, Luan S (2009) A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci U.S.A. 106:21419–21424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sato A, Sato Y, Fukao Y, Fujiwara M, Umezawa T, Shinozaki K, Hibi T, Taniguchi M, Miyake H, Goto DB, Uozumi N (2009) Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424:439–448

    Article  CAS  PubMed  Google Scholar 

  70. Yuan L, Liu X, Luo M, Yang S, Wu K (2013) Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol 55:892–901

    CAS  PubMed  Google Scholar 

  71. Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    Article  CAS  PubMed  Google Scholar 

  72. Doyle MR, Amasino RM (2009) A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis. Plant Physiol 1513:1688–1697

    Article  CAS  Google Scholar 

  73. Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB (2014) Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. Elife 3:e01741

    PubMed  PubMed Central  Google Scholar 

  74. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  75. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pikaard CS, Mittelsten Scheid O (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 612:a019315

    Article  Google Scholar 

  77. Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  CAS  PubMed  Google Scholar 

  78. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PC (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE 5:e10326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Tricker PJ, Gibbings JG, Rodriguez Lopez CM, Hadley P, Wilkinson MJ (2012) Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J Exp Bot 63:3799–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tricker PJ, Lopez CM, Gibbings G, Hadley P, Wilkinson MJ (2013) Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int J Mol Sci 14:6674–6689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, Zolla G, Kaye Y, Paul LK, Zhu JK, Maga G, Grafi G, Barak S (2014) The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar and chromocenter localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. Plant J 791:28–43

    Article  CAS  Google Scholar 

  83. Popova OV, Dinh HQ, Aufsatz W, Jonak C (2013) The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant 62:396–410

    Article  CAS  Google Scholar 

  84. Draghi JA, Whitlock MC (2012) Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66:2891–2902

    Article  PubMed  Google Scholar 

  85. Clapier CR, Cairns BR (2009) The biology of chromatin remodelling complexes. Annu Rev Biochem 78:273–304

    Article  CAS  PubMed  Google Scholar 

  86. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han SK, Sang Y, Rodrigues A, Biol F, Wu MF, Rodriguez PL, Wagner D (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24:4892–4906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ho KK, Zhang H, Golden BL, Ogas J (2013) PICKLE is a CHD subfamily II ATP-dependent chromatin remodeling factor. Biochim Biophys Acta 1829:199–210

    Article  CAS  PubMed  Google Scholar 

  90. Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J (2012) The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. Plant Physiol 159:418–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL (2016) A direct link between abscisic acid sensing and the chromatin remodeling ATPase BRAHMA via core ABA signaling pathway components. S1674–20521500398-6. doi:10.1016/j.molp.2015.10.003

    Google Scholar 

  92. Jing Y, Zhang D, Wang X, Tang W, Wang W, Huai J, Xu G, Chen D, Li Y, Lin R (2013) Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyls cell elongation. Plant Cell 25:242–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat Commun 13(3):740

    Google Scholar 

  94. Ding Y, Virlouvet L, Liu N, Riethoven JJ, Fromm M, Avramova Z (2014) Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol 22(14):141

    Article  CAS  Google Scholar 

  95. Liu N, Ding Y, Fromm M, Avramova Z (2014) Different gene-specific mechanisms determine the ‘revised-response’ memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Res 2014(429):5556–5566

    Article  CAS  Google Scholar 

  96. Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 25(264):1792–1807

    Article  CAS  Google Scholar 

  97. Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  99. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    Article  CAS  PubMed  Google Scholar 

  100. Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Virlouvet L1, Fromm M (2015) Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytol 2052:596–607

    Google Scholar 

  102. Goh CH, Nam HG, Park YS (2003) Stress memory in plants: a negative regulation of stomatal response and transient induction of rd22 gene to light in abscisic acid-entrained Arabidopsis plants. Plant J 2003(362):240–255

    Article  CAS  Google Scholar 

  103. Grossniklaus U, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11:709–719

    Article  CAS  PubMed  Google Scholar 

  105. Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 812:e1003135

    Article  CAS  Google Scholar 

  107. Lo SM, Follmer NE, Lengsfeld BM, Madamba EV, Seong S, Grau DJ, Francis NJ (2012) A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro. Mol Cell 46:784–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Petruk S, Sedkov Y, Johnston DM, Hodgson JW, Black KL, Kovermann SK, Beck S, Canaani E, Brock HW, Mazo A (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Steffen PA, Ringrose L (2014) What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 155:340–356

    Article  CAS  Google Scholar 

  110. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 2985595:1039–1043

    Article  CAS  Google Scholar 

  111. Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 1722:1978–1983

    Article  CAS  Google Scholar 

  112. Iwasaki M, Paszkowski J (2014) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states

    Google Scholar 

  113. Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    Article  PubMed  PubMed Central  Google Scholar 

  114. Avramova Z (2015) Transcriptional ‘memory’ of a stress: transient chromatin and memory epigenetic marks at stress-response genes. Plant J 831:149–159

    Article  CAS  Google Scholar 

  115. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li JF, Zhang D, Sheen J (2015) Targeted plant genome editing via the CRISPR/Cas9 technology. Methods Mol Biol 1284:239–255

    Article  CAS  PubMed  Google Scholar 

  117. Wang D, Deal RB (2015) Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq. Methods Mol Biol 1284:3–25

    Article  CAS  PubMed  Google Scholar 

  118. Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  CAS  PubMed  Google Scholar 

  119. Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vlachonasios KE, Kaldis A, Nikoloudi A, Tsementzi D (2011) The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses. Plant Signal Behav 6:1475–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax like factor ATX1 functions in dehydration stress responses via ABA dependent and ABA-independent pathways. Plant J 66:735–744

    Article  CAS  PubMed  Google Scholar 

  123. Pu L, Liu MS, Kim SY, Chen LF, Fletcher JC, Sung ZR (2013) EMBRYONIC FLOWER1 and ULTRAPETALA1 act antagonistically on Arabidopsis development and stress response. Plant Physiol 162:812–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim SY, Zhu T, Sung ZR. 2009. Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol. 152:516–528

    Google Scholar 

  125. Fu YL, Zhang GB, Lv XF, Guan Y, Yi HY, Gong JM (2013) Arabidopsis histone methylase CAU1/PRMT5/SKB1 acts as an epigenetic suppressor of the calcium signaling gene CAS to mediate stomatal closure in response to extracellular calcium. Plant Cell 25:2878–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang Z, Zhang S, Zhang Y et al (2011) Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. Plant Cell 23:396–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Ascenzi R, Gantt JS (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol 34:629–641

    Article  CAS  PubMed  Google Scholar 

  128. Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Narendra Singh Yadav for his valuable comments and COS, Uni-Heidelberg, German Research Foundation (DFG) and Shanghai Centre for Plant Stress Biology for their invaluable support. GZ acknowledges support from Methusalem Funding to the Centre of Excellence ‘PLECO’, University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asif Khan or Gaurav Zinta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khan, A., Zinta, G. (2016). Drought Stress and Chromatin: An Epigenetic Perspective. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-32423-4_21

Download citation

Publish with us

Policies and ethics