Skip to main content

Lead-Free Ferroelectric Thin Films

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Sol-gel-derived ferroelectric thin films, with lead zirconate titanate (Pb(Zr,Ti)O3, PZT) as one of the most widely studied materials, have been investigated for a wide range of applications, including microelectromechanical systems. The research of environment-friendly alternatives to lead-based materials, to a large extent driven by legislation, has been mainly conducted in the domain of bulk ceramics; however, environment-friendly alternatives to lead-based ferroelectric thin films have been also studied in recent years. Three most studied groups of lead-free materials include materials based on sodium potassium niobate solid solution ((K0.5Na0.5NbO3), KNN), bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT), and barium titanate – such as barium zirconate titanate–barium calcium titanate solid solution (Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3, BZT-BCT). In the present review, each group is discussed in terms of material properties, sol-gel processing, and thin film crystallization, microstructure, and functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn CW, Jeong ED, Lee SY, Lee HJ, Kang SH, Kim IW. Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition. Appl Phys Lett. 2008;93(21):212905-1–3.

    Google Scholar 

  • Ahn CW, Lee SY, Lee HJ, Ullah A, Bae JS, Jeong ED, et al. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films. J Phys D Appl Phys. 2009;42(21):215304–1–5.

    Google Scholar 

  • Ahn CW, Seog HJ, Ullah A, Lee SY, Kim JW, Kim SS, et al. Effect of Ta content on the phase transition and piezoelectric properties of lead-free (K0.48Na0.48Li0.04)(Nb0.995-xMn0.005Tax)O3 thin film. J Appl Phys. 2012;111(2):24110-1–024110-6.

    Google Scholar 

  • Ahtee M, Glazer AM. Lattice parameters and tilted octahedra in sodium-potassium niobate solid solutions. Acta Crystallogr Sect A. 1976;32(3):434–45.

    Google Scholar 

  • Ahtee M, Hewat AW. The structures of Na0.98K0.02NbO3 and Na0.90K0.10NbO3 (phase Q) at room temperature by neutron powder diffraction. Acta Crystallogr Sect A. 1975;A31:846–50.

    CAS  Google Scholar 

  • Ahtee M, Hewat AW. Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr Sect A. 1978;34(2):309–17.

    Google Scholar 

  • Attia J, Bellaiche L, Gemeiner P, Dkhil B, Malic B. Study of potassium-sodium-niobate alloys: a combined experimental and theoretical approach. J Phys IV. 2005;128:55–60.

    CAS  Google Scholar 

  • Bassiri-Gharb N, Bastani Y, Bernal A. Chemical solution growth of ferroelectric oxide thin films and nanostructures. Chem Soc Rev. 2014;43(7):2125–40.

    CAS  Google Scholar 

  • Budd KD, Dey SY, Payne DA. Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br Ceram Soc Proc. 1985;36:107–21.

    CAS  Google Scholar 

  • Buhrer CF. Some properties of bismuth perovskites. J Chem Phys. 1962;36(3):798.

    CAS  Google Scholar 

  • Čakare-Samardžija L, Malič B, Kosec M. (K0.5Na0.5)NbO3 thin films prepared by chemical solution deposition. Ferroelectrics. 2008;370:113–8.

    Google Scholar 

  • Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21(24):2463–85.

    CAS  Google Scholar 

  • Chen Y, Zhang TY, Chi QG, Lin JQ, Wang X, Lei QQ. Low temperature growth of (100)-oriented Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 thin films using a LaNiO3 seed layer. J Alloys Compd. 2016;663:818–22.

    CAS  Google Scholar 

  • Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, et al. Achieving both giant d33 and high TC in potassium-sodium niobate ternary system. Appl Mater Interfaces. 2014;6(2):750–6.

    CAS  Google Scholar 

  • Chi QG, Zhu HF, Xu JC, Wang X, Lin JQ, Sun Z, et al. Microstructures and electrical properties of 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 thin films prepared by a sol-gel route. Ceram Int. 2013;39(7):8195–8.

    CAS  Google Scholar 

  • Chi QG, Zhang CH, Sun J, Yang FY, Wang X, Lei QQ. Interface optimization and electrical properties of 0.5Ba(Zr0.2Ti0.8)03-0.5(Ba0.7Ca0.3)TiO3 thin films prepared by a sol-gel process. J Phys Chem C. 2014;118(28):15220–5.

    CAS  Google Scholar 

  • Cho CR, Grishin A. Background oxygen effects on pulsed laser deposited Na0.5K0.5NbO3 films: from superparaelectric state to ferroelectricity. J Appl Phys. 2000;87(9):4439–48.

    CAS  Google Scholar 

  • Cho CR, Moon BM. (Na, K)NbO3 thin films using metalorganic chemical vapor deposition. Integr Ferroelectr. 2002;45(1):39–48.

    CAS  Google Scholar 

  • Chowdhury A, Bould J, Londesborough MGS, Milne SJ. The effect of refluxing on the alkoxide-based sodium potassium niobate sol-gel system: thermal and spectroscopic studies. J Solid State Chem. 2011;184(2):317–24. Elsevier.

    Google Scholar 

  • Damjanovic D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys. 1998;61(9):1267–324.

    CAS  Google Scholar 

  • Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc. 1959;42(9):438–42.

    CAS  Google Scholar 

  • Elkechai O, Manier M, Mercurio JP. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) system: a structural and electrical study. Phys Status Solidi. 1996;157(2):499–506.

    Google Scholar 

  • Fukada M, Saito T, Kume H, Wada T. Fabrication of lead-free piezoelectric (Na0.5K0.5)NbO3 ceramics by solid-state reaction method. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55(5):988–93.

    CAS  Google Scholar 

  • Fukushima J, Kodaira K, Matsushita T. Preparation of ferroelectric PZT films by thermal decomposition of organometallic compounds. J Mater Sci. 1984;19:595–8.

    CAS  Google Scholar 

  • Glinšek S, Arčon I, Malič B, Kodre A, Kosec M. Structural evolution of the KTa0.6Nb0.4O3 alkoxide-based solutions: probing the transition metals local environment by X-ray absorption spectroscopy. J Sol-Gel Sci Technol. 2012;62(1):1–6.

    Google Scholar 

  • Guo Y, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl Phys Lett. 2004;85(18):4121–3.

    CAS  Google Scholar 

  • Gurkovich SR, Blum JB. Preparation of monolithic PbTiO3 by a sol-gel process. In: Hench LL, Ulrich DR, editors. Ultrastructure processing of ceramics, glasses and composites. New York: Wiley; 1984.

    Google Scholar 

  • Härdtl KH, Rau H. Vapor pressure in Pb(Ti1-xZrx)O3 system. Solid State Commun. 1969;7:41–5.

    Google Scholar 

  • Hiboux S, Muralt P. Piezoelectric and dielectric properties sputter deposited (111), (100) and random-textured Pb(ZrxTi1-x)O3 (PZT) thin films. Ferroelectrics. 1999;224(1):743–50.

    CAS  Google Scholar 

  • Hollenstein E, Davis M, Damjanovic D, Setter N. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett. 2005;87(18):182905–1–3.

    Google Scholar 

  • Huang L, Dai Y, Wu Y, Pei X, Chen W. Enhanced ferroelectric and piezoelectric properties of (1-x)BaZr0.2Ti0.8O3–xBa0.7Ca0.3TiO3 thin films by sol–gel process. Appl Surf Sci. 2016;388:35–9.

    CAS  Google Scholar 

  • Isupov VA. Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics. 2005;315(1):123–47.

    CAS  Google Scholar 

  • Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. In: Roberts JP, Popper P, editors. Piezoelectric ceramics. New York: Academic; 1971.

    Google Scholar 

  • Jones G, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr Sect B. 2002;58(2):168–78.

    CAS  Google Scholar 

  • JRoHS. JIS C 0950:2005 – Japanese Industrial Standard – the marking for presence of the specific chemical substances for electrical and electronic equipment. 2005 p. 26.

    Google Scholar 

  • Kang DH, Kang YH. Dielectric and pyroelectric properties of lead-free sodium bismuth titanate thin films due to excess sodium and bismuth addition. J Microelectron Packag Soc. 2013;20(4):25–30.

    Google Scholar 

  • Kang C, Park J-H, Shen D, Ahn H, Park M, Kim D-J. Growth and characterization of (K0.5Na0.5)NbO3 thin films by a sol–gel method. J Sol-Gel Sci Technol. 2011;58(1):85–90.

    CAS  Google Scholar 

  • Kang G, Yao K, Wang J. (1 – x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ferroelectric thin films prepared from chemical solutions. J Am Ceram Soc. 2012;95(3):986–91.

    CAS  Google Scholar 

  • Kanno I, Ichida T, Adachi K, Kotera H, Shibata K, Mishima T. Power-generation performance of lead-free (K, Na)NbO3 piezoelectric thin-film energy harvesters. Sensors Actuators A Phys. 2012;179:132–6.

    CAS  Google Scholar 

  • Keeble DS, Benabdallah F, Thomas PA, Maglione M, Kreisel J. Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl Phys Lett. 2013;102(9):92903.

    Google Scholar 

  • Khartsev S, Grishin A, Andreasson J, Koh JH, Song J. Comparative characteristics of Na0.5K0.5NbO3 films on Pt by pulsed laser deposition and magnetron sputtering. Integr Ferroelectr. 2003;55(1):769–79.

    CAS  Google Scholar 

  • Kingon AI, Clark JB. Sintering of PZT ceramics: I, atmosphere control. J Am Ceram Soc. 1983a;66(4):253–6.

    CAS  Google Scholar 

  • Kingon AI, Clark JB. Sintering of PZT ceramics: II, effects of PbO content on densification kinetics. J Am Ceram Soc. 1983b;66(4):256–60.

    CAS  Google Scholar 

  • Kondo N, Sakamoto W, Lee B-Y, Iijima T, Kumagai J, Moriya M, et al. Improvement in ferroelectric properties of chemically synthesized lead-free piezoelectric (K,Na)(Nb,Ta)O3 thin films by Mn doping. Jpn J Appl Phys. 2010;49(9):09MA04-1–6.

    Google Scholar 

  • Kosec M, Malič B. Ferroelectric thin films. In: Aegerter MA, Menning M, editors. Sol-gel technologies for glass producers and users. Boston: Kluwer; 2004. p. 207–16.

    Google Scholar 

  • Kupec A. Solution-derived (K0.5Na0.5)NbO3-based thin films. Doctoral dissertation. Ljubljana: Jožef Stefan International Postgraduate School; 2014.

    Google Scholar 

  • Kupec A, Malič B, Tellier J, Tchernychova E, Glinšek S, Kosec M. Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure. J Am Ceram Soc. 2012;95(2):515–23.

    CAS  Google Scholar 

  • Kupec A, Gemeiner P, Dkhil B, Malič B. Phase transitional behavior of potassium sodium niobate thin films. Thin Solid Films. 2013;539:317–22.

    CAS  Google Scholar 

  • Kupec A, Uršič H, Frunză RC, Tchernychova E, Malič B. Microstructure-dependent leakage-current properties of solution-derived (K0.5Na0.5)NbO3 thin films. J Eur Ceram Soc. 2015;35(13):3507–11.

    CAS  Google Scholar 

  • Kwok CK, Desu SB. Low temperature perovskite formation of lead zirconate titanate thin films by a seeding process. J Mater Res. 1993;8:339–44.

    Google Scholar 

  • Lee YH, Cho JH, Kim BI, Choi DK. Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0.5Na0.5)NbO3 ceramics. Jpn J Appl Phys. 2008;47(6):4620–2.

    CAS  Google Scholar 

  • Lee SY, Ahn CW, Kim JS, Ullah A, Lee HJ, Hwang HI, et al. Enhanced piezoelectric properties of Ta substituted-(K0.5Na0.5)NbO3 films: a candidate for lead-free piezoelectric thin films. J Alloys Compd. 2011;509(20):L194–8.

    CAS  Google Scholar 

  • Li JF, Wang K, Zhang BP, Zhang LM. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc. 2006;89(2):706–9.

    CAS  Google Scholar 

  • Li W, Hao J, Zeng H, Zhai J. Dielectric and piezoelectric properties of the Ba0.92Ca0.08Ti0.95Zr0.05O3 thin films grown on different substrate. Curr Appl Phys. 2013;13(7):1205–8.

    CAS  Google Scholar 

  • Li W, Li P, Zeng H, Hao J, Zhai J. Enhanced dielectric and piezoelectric properties in lead-free Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 thin films with seed layer. Ceram Int. 2015a;41(S1):S356–60.

    CAS  Google Scholar 

  • Li W, Li P, Zeng H, Hao J, Zhai J. The optimization of electric properties of multilayered BNT-BT-ST/BCST thin films by configuration. RSC Adv. 2015b;5(8):6181–5.

    CAS  Google Scholar 

  • Li WL, Zhang TD, Xu D, Hou YF, Cao WP, Fei WD. LaNiO3 seed layer induced enhancement of piezoelectric properties in (100)-oriented (1-x)BZT-BCT thin films. J Eur Ceram Soc. 2015c;35(7):2041–9.

    CAS  Google Scholar 

  • Lin Y, Wu G, Qin N, Bao D. Structure, dielectric, ferroelectric, and optical properties of (1 – x)Ba(Zr0.2Ti0.8)O3 – x(Ba0.7Ca0.3)TiO3 thin films prepared by sol–gel method. Thin Solid Films. 2012;520(7):2800–4.

    CAS  Google Scholar 

  • Liu W, Ren X. Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett. 2009;103(25):1–4.

    Google Scholar 

  • Lu SG, Rožič B, Zhang QM, Kutnjak Z, Li X, Furman E, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett. 2010;97(16):162904–1. 162904–4.

    Google Scholar 

  • Lu T, Zhu K, Liu J, Wang J, Qiu J. Lead-free (K, Na)NbO3 thin films derived from chemical solution deposition modified with EDTA. J Mater Sci Mater Electron. 2014;25(2):1112–6.

    CAS  Google Scholar 

  • Malič B, Kosec M. Influence of the structure of precursors on the crystallization of PbTiO3 thin films. In: Sakka S, editor. Sol-gel science and technology: topics in fundamental research and applications. Boston: Kluwer; 2003. p. 185–8.

    Google Scholar 

  • Malič B, Kupec A, Uršič H, Kosec M. Ferroelectric thin films for energy conversion applications. In: Aparicio M, Jitianu A, Klein LC, editors. Sol-gel processing for conventional and alternative energy. New York: Springer; 2012. p. 293–314.

    Google Scholar 

  • Malič B, Glinšek S, Schneller T, Kosec M. Mixed metallo-organic precursor systems. In: Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional oxide thin films. Wien: Springer; 2013. p. 51–69.

    Google Scholar 

  • Malič B, Koruza J, Hreščak J, Bernard J, Wang K, Fisher JG, et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics. Materials. 2015;8(12):8117–46.

    Google Scholar 

  • Matsuda T, Sakamoto AW, Lee B, Iijima T, Kumagai J. Electrical properties of lead-free ferroelectric Mn-doped K0.5Na0.5NbO3–CaZrO3 thin films prepared by chemical solution deposition. Jpn J Appl Phys. 2012;51:09LA03-1–6.

    Google Scholar 

  • Mimura K-I, Naka T, Shimura T, Sakamoto W, Yogo T. Synthesis and dielectric properties of (Ba, Ca)(Zr, Ti)O3 thin films using metal-organic precursor solutions. Thin Solid Films. 2008;516(23):8408–13.

    CAS  Google Scholar 

  • Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science. 2006;311(5765):1270–1.

    CAS  Google Scholar 

  • Muralt P. Recent progress in materials issues for piezoelectric MEMS. J Am Ceram Soc. 2008;91(5):1385–96.

    CAS  Google Scholar 

  • Muralt P. Oxide thin films for MEMS applications. In: Schneller T, Waser R, Kosec M, Payne DA, editors. Chemical solution deposition of functional oxide thin films. Wien: Springer; 2013. p. 593–620.

    Google Scholar 

  • Muralt P, Polcawich RG, Trolier-McKinstry S. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 2009;34(9):658–64.

    CAS  Google Scholar 

  • Nakashima Y, Sakamoto W, Shimura T, Yogo T. Chemical processing and characterization of ferroelectric (K, Na)NbO3 thin films. Jpn J Appl Phys. 2007;46(10B):6971–5.

    CAS  Google Scholar 

  • Nakashima Y, Sakamoto W, Yogo T. Processing of highly oriented (K,Na)NbO3 thin films using a tailored metal-alkoxide precursor solution. J Eur Ceram Soc. 2011;31(14):2497–503.

    Google Scholar 

  • Ojha KS. Structural optimization of bismuth sodium titanate thin films. Ferroelectrics. 2015;474(1–6):163–8.

    CAS  Google Scholar 

  • Otoničar M, Škapin SD, Spreitzer M, Suvorov D. Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system. J Eur Ceram Soc. 2010;30(4):971–9.

    Google Scholar 

  • Panda PK. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci. 2009;44(19):5049–62.

    CAS  Google Scholar 

  • Popovič A, Bencze L, Koruza J, Malič B. Vapour pressure and mixing thermodynamic properties of the KNbO3-NaNbO3 system. RSC Adv. 2015;5(93):76249–56.

    Google Scholar 

  • Priya S, Nahm S, editors. Lead-free piezoelectrics. New York: Springer; 2012.

    Google Scholar 

  • Rémondière F, Malič B, Kosec M, Mercurio JP. Synthesis and crystallization pathway of Na0.5Bi0.5TiO3 thin film obtained by a modified sol-gel route. J Eur Ceram Soc. 2007;27(13–15):4363–6.

    Google Scholar 

  • Rémondière F, Malič B, Kosec M, Mercurio JP. Study of the crystallization pathway of Na0.5Bi0.5TiO3 thin films obtained by chemical solution deposition. J Sol-Gel Sci Technol. 2008;46(2):117–25.

    Google Scholar 

  • Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92(6):1153–77.

    Google Scholar 

  • Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D. Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc. 2015;35(6):1659–81.

    Google Scholar 

  • RoHS1. Directive 2002/95/EC of the European Parliament and of the European Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union. 2003;L37:19–23.

    Google Scholar 

  • RoHS2. Directive 2011/65/EU of the European Parliament and of the European Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off J Eur Union. 2011;L174:88–110.

    Google Scholar 

  • Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc. 2014;97(7):1993–2011.

    CAS  Google Scholar 

  • Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, et al. Lead-free piezoceramics. Lett Nat. 2004;432:84–7.

    CAS  Google Scholar 

  • Sakamoto W, Makino N, Lee B, Iijima T, Moriya M, Yogo T. Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sensors Actuators A Phys. 2013;200:60–7.

    CAS  Google Scholar 

  • Sasaki A, Chiba T, Mamiya Y, Otsuki E. Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 system. Jpn J Appl Phys. 1999;38(9B):5564–7.

    CAS  Google Scholar 

  • Schwartz RW. Chemical solution deposition of perovskite thin films. Chem Mater. 1997;9(11):2325–40.

    CAS  Google Scholar 

  • Schwartz RW, Narayanan M. Thermodynamics and heating processes. In: Schneller T, Waser R, Kosec M, Payne D, editors. Chemical solution deposition of functional oxide thin films. Wien: Springer; 2013. p. 343–82.

    Google Scholar 

  • Schwartz RW, Schneller T, Waser R. Chemical solution deposition of electronic oxide films. C R Chim. 2004;7(5):433–61.

    CAS  Google Scholar 

  • Shibata K, Oka F, Ohishi A, Mishima T, Kanno I. Piezoelectric properties of (K, Na)NbO3 films deposited by RF magnetron sputtering. Appl Phys Express. 2008;1(1):11501-1. 11501-3.

    Google Scholar 

  • Shirane G, Newhman R, Pepinsky R. Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev. 1954;96(3):581–8.

    CAS  Google Scholar 

  • Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram. 2007;19(1):111–24.

    CAS  Google Scholar 

  • Smolenskii GA, Isupov VA, Agranovskaya AI, Popov SN. Ferroelectrics with diffuse phase transitions. Sov Phys Solid State. 1961;2(11):2584–94.

    Google Scholar 

  • Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys. 1991;30(9B):2236–9.

    CAS  Google Scholar 

  • Tanaka K, Hayashi H, Kakimoto KI, Ohsato H, Iijima T. Effect of (Na, K)-excess precursor solutions on alkoxy-derived (Na, K)NbO3 powders and thin films. Jpn J Appl Phys. 2007;46(10B):6964–70.

    CAS  Google Scholar 

  • Tang X, Wang J, Wang X, Chan HL-W. Preparation and electrical properties of highly (111)-oriented (Na0.5Bi0.5)TiO3 thin films by a sol-gel process. Chem Mater. 2004;16(25):5293–6.

    CAS  Google Scholar 

  • Tellier J, Malič B, Dkhil B, Jenko D, Cilenšek J, Kosec M. Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci. 2009;11(2):320–4. Elsevier Masson SAS.

    CAS  Google Scholar 

  • Tennery VJ, Hang KW. Thermal and X-ray diffraction studies of the NaNbO3-KNbO3 system. J Appl Phys. 1968;39(10):4749–53.

    CAS  Google Scholar 

  • Toyoda M, Lubis MYS. Preparation and characterization of (Ba, Ca)(Ti, Zr)O3 thin films through sol-gel processing. J Sol-Gel Sci Technol. 1999;16(1–2):7–12.

    CAS  Google Scholar 

  • Trodahl HJ, Klein N, Damjanovic D, Setter N, Ludbrook B, Rytz D, et al. Raman spectroscopy of (K, Na)NbO3 and (K, Na)1–xLixNbO3. Appl Phys Lett. 2008;93(26):262901-1–3.

    Google Scholar 

  • Trolier-McKinstry S, Muralt P. Thin film piezoelectrics for MEMS. J Electroceram. 2004;12(1–2):7–17.

    CAS  Google Scholar 

  • Tyholdt F, Calame F, Prume K, Ræder H, Muralt P. Chemically derived seeding layer for {100}-textured PZT thin films. J Electroceram. 2007;19(4):311–4.

    CAS  Google Scholar 

  • USCS. U.S. California Senate. Bill No. 50: solid waste: hazardous electronic waste. 2004.

    Google Scholar 

  • Vogl A, Tyholdt F, Tofteberg H, Muralt P. Piezoelectric thin film materials for MEMS. In: Tilli M, Motooka T, Airaksinen VM, Franssila S, Paulasto-Krockel M, Lindroos V, editors. Handbook of silicon based MEMS materials and technologies. Oxford: William Andrew; 2015. p. 124–205.

    Google Scholar 

  • Wakasa Y, Kanno I, Yokokawa R, Kotera H, Shibata K, Mishima T. Piezoelectric properties of microfabricated (K, Na)NbO3 thin films. Sensors Actuators A Phys. 2011;171(2):223–7.

    CAS  Google Scholar 

  • Wang L, Yao K, Goh PC, Ren W. Volatilization of alkali ions and effects of molecular weight of polyvinylpyrrolidone introduced in solution-derived ferroelectric K0.5Na0.5NbO3 films. J Mater Res. 2009;24(12):3516–22.

    CAS  Google Scholar 

  • Wang Z, Zhao K, Guo X, Sun W, Jiang H, Han X, et al. Crystallization, phase evolution and ferroelectric properties of sol-gel-synthesized Ba(Ti0.8Zr 0.2)O3–x(Ba0.7Ca0.3)TiO3 thin films. J Mater Chem C. 2013;1(3):522–30.

    CAS  Google Scholar 

  • Wang H, Xu J, Ma C, Xu F, Wang L, Bian L, et al. Spectroscopic ellipsometry study of 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 ferroelectric thin films. J Alloys Compd. 2014a;615:526–30.

    CAS  Google Scholar 

  • Wang X, Wu J, Xiao D, Cheng X, Zheng T, Zhang B, et al. Large d33 in (K, Na)(Nb, Ta, Sb)O3-(Bi, Na, K)ZrO3 lead-free ceramics. J Mater Chem A. 2014b;2(12):4122–6.

    CAS  Google Scholar 

  • Wang X, Wu J, Xiao D, Zhu J, Cheng X, Zheng T, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc. 2014c;136(7):2905–10.

    CAS  Google Scholar 

  • Wang H, Xu J, Ma C, Zhao P, Wang L, Bian L, et al. Infrared optical properties of ferroelectric 0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 thin films. Ceram Int. 2015;41(1):475–80.

    Google Scholar 

  • Wang Y, Yao K, Sharifzadeh Mirshekarloo M, Tay FEH. Effects and mechanism of combinational chemical agents on solution-derived K0.5Na0.5NbO3 piezoelectric thin films. J Am Ceram Soc. 2016;99(5):1631–6.

    CAS  Google Scholar 

  • Wenha C, Xiaohui W, Longtu L. Large piezoresponse of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 thin films prepared via water-based sol-gel method. Ceram Int. 2015;41(S1):S37–40.

    Google Scholar 

  • Wenhan C, Xiaohui W, Yunyi W, Yun-gang L, Longtu L. Investigation of thickness dependence of electric properties of sol-gel BNT-BT thin films with stepwise crystallization. J Ceram Soc Jpn. 2016;124(4):464–8.

    Google Scholar 

  • Wiegand S, Flege S, Baake O, Ensinger W. Effect of different calcination temperatures and post annealing on the properties of acetic acid based sol-gel (Na0.5K0.5)NbO3 (NKN) thin films. J Alloys Compd. 2013;548:38–45. Elsevier B.V.

    CAS  Google Scholar 

  • Won SS, Lee J, Venugopal V, Kim DJ, Lee J, Kim IW, et al. Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl Phys Lett. 2016;108(23):232908-1–5.

    Google Scholar 

  • Wu L, Zhang JL, Wang CL, Li JC. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J Appl Phys. 2008;103(8):84116-1–084116-5.

    Google Scholar 

  • Yan X, Ren W, Wu X, Shi P, Yao X. Lead-free (K,Na)NbO3 ferroelectric thin films: preparation, structure and electrical properties. J Alloys Compd. 2010;508(1):129–32.

    CAS  Google Scholar 

  • Yang CH, Wang Z, Li QX, Wang JH, Yang YG, Gu SL, et al. Properties of Na0.5Bi0.5TiO3 ferroelectric films prepared by chemical solution decomposition. J Cryst Growth. 2005;284(1–2):136–41.

    CAS  Google Scholar 

  • Yang CH, Hu GD, Wu WB, Wu HT, Yang F, Lu ZY, et al. Reduced leakage current, enhanced ferroelectric and dielectric properties in (Ce,Fe)-codoped Na0.5Bi0.5TiO3 film. Appl Phys Lett. 2012;100(2):22909-1–022909-3.

    Google Scholar 

  • Yang C, Sui H, Yang H, Li X. Preparation of perovskite Fe-doped Na0.5Bi0.5TiO3 thin film from polyethylene glycol-modified solution precursor on LaNiO3/Si substrate. Mater Lett. 2013;102–103:109–11.

    Google Scholar 

  • Yao L, Zhu K. Citrate complexing sol-gel process of lead-free (K,Na)NbO3 ferroelectric films. Mod Phys Lett B. 2016;30(13):1340–44.

    Google Scholar 

  • Yu T, Kwok KW, Chan HLW. Preparation and properties of sol-gel-derived Bi0.5Na0.5TiO3 lead-free ferroelectric thin film. Thin Solid Films. 2007a;515(7–8):3563–6.

    CAS  Google Scholar 

  • Yu T, Kwok KW, Chan HLW. The synthesis of lead-free ferroelectric Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 thin films by sol-gel method. Mater Lett. 2007b;61(10):2117–20.

    CAS  Google Scholar 

  • Yu Q, Li JF, Sun W, Zhou Z, Xu Y, Xie ZK, et al. Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J Appl Phys. 2013;113(2):24101-1–024101-5.

    Google Scholar 

  • Zang G-Z, Wang J-F, Chen H-C, Su W-B, Wang C-M, Qi P, et al. Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl Phys Lett. 2006;88(21):212908-1–3.

    Google Scholar 

  • Zhang ZG, Khartsev SI, Grishin AM. Ferroelectric properties of (Na0.5K0.5)NbO3 films at low temperatures. Integr Ferroelectr. 2004;67(1):59–68.

    CAS  Google Scholar 

  • Zhang BP, Zhang LM, Li J, Ding XN, Zhang HL. Effect of sintering temperature on electrical properties of Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by normal sintering. Ferroelectrics. 2007;358(1):188–95.

    CAS  Google Scholar 

  • Zheng T, Wu J, Cheng X, Wang X, Zhang B, Xiao D, et al. High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C R Soc Chem. 2014;2(41):8796–803.

    CAS  Google Scholar 

  • Zhou H, Liu X, Qin N, Bao D. Strong red emission in lead-free ferroelectric Pr3+-doped Na0.5Bi0.5TiO3 thin films without the need of charge compensation. J Appl Phys. 2011;110(3):34102-3–034102-8.

    Google Scholar 

  • Zhou H, Wang S, Wu G, Zhu X, Wang X, Pan A. Er3+-doped Na0.5Bi0.5TiO3 ferroelectric thin films with enhanced electrical properties and strong green up-conversion luminescence. Appl Phys A Mater Sci Process. 2015;119(3):937–40.

    CAS  Google Scholar 

  • Zuo R, Rödel J, Chen R, Li L. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc. 2006;89(6):2010–5.

    CAS  Google Scholar 

  • Zuo R, Fu J, Lv D. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48−xLix)(Nb1−x−ySbyTax)O3 system. J Am Ceram Soc. 2009;92(1):283–5.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency program P2-0105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Malič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malič, B., Kupec, A., Vojisavljević, K., Pečnik, T. (2018). Lead-Free Ferroelectric Thin Films. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_19

Download citation

Publish with us

Policies and ethics