Skip to main content

Sol-Gel Processing of Solid Electrolytes for Li-Ion Batteries

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Preparation of solid electrolytes for the all-solid-state Li-ion batteries is reviewed. Precursors and preparation procedure for the typical oxide-based Li-ion conductors with NASICON, perovskite, and garnet structures, sulfide-based Li-ion conductors, and organic–inorganic hybrid materials are described. Since these solid electrolytes are usually multicomponent system, the sol-gel process or other solution processes are often used for the better control of chemical composition of the materials and also for the control of morphology of the solid electrolytes. Solution processes are also useful for the formation of favorable solid–solid interface between electrode and electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Introduction

  • Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev. 2016;116:140–62.

    CAS  Google Scholar 

  • Gao C, Li ZB, Wang XL, Zhao XB, Han WQ. Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res. 2014;2:Article 25.

    Google Scholar 

  • Minami T. Solid state ionics for batteries. Tokyo: Springer; 2005.

    Google Scholar 

  • Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013;61:759–70.

    CAS  Google Scholar 

  • Tatsumisago M, Nagao M, Hayashi A. Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J Asian Ceram Soc. 2013;1:17–25.

    Google Scholar 

Nasicon

  • Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY. Ionic conductivity of the lithium titanium phosphate (Li1+XMXTi2−X(PO4)3, M = Al, Sc, Y, and La) systems. J Electrochem Soc. 1989;136(2):590–1.

    Google Scholar 

  • Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ion. 1991;47(3):257–64.

    CAS  Google Scholar 

  • Cretin M, Fabry P. Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV (PO4)3 with AIV = Ti or Ge and 0 ≤ x ≤ 0 · 7 for use as Li+ sensitive membranes. J Eur Ceram Soc. 1999;19(16):2931–40.

    CAS  Google Scholar 

  • Duluard S, Paillassa A, Puech L, Vinatier P, Turq V, Rozier P, Lenormand P, Taberna P-L, Simon P, Ansart F. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. J Eur Ceram Soc. 2013;33(6):1145–53.

    CAS  Google Scholar 

  • El-Shinawi H, Greaves C, Janek J. Sol–gel synthesis and room-temperature properties of α-LiZr2(PO4)3. RSC Adv. 2015;5(22):17054–9.

    CAS  Google Scholar 

  • Mariappan CR, Galven C, Crosnier-Lopez MP, Le Berre F, Bohnke O. Synthesis of nanostructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method. J Solid State Chem. 2006;179(2):450–6.

    CAS  Google Scholar 

  • Schroeder M, Glatthaar S, Binder JR. Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders. Solid State Ion. 2011;201(1):49–53.

    CAS  Google Scholar 

  • Takada K, Fujimoto K, Inada T, Kajiyama A, Kouguchi M, Kondo S, Watanabe M. Sol–gel preparation of Li+ ion conductive thin film. Appl Surf Sci. 2002;189(3–4):300–6.

    CAS  Google Scholar 

  • Wu XM, Li XH, Zhang YH, Xu MF, He ZQ. Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol–gel technique. Mater Lett. 2004;58(7–8):1227–30.

    CAS  Google Scholar 

  • Zhang M, Takahashi K, Imanishi N, Takeda Y, Yamamoto O, Chi B, Pu J, Li J. Preparation and electrochemical properties of Li1+xAlxGe2-x(PO4)3 synthesized by a sol–gel method. J Electrochem Soc. 2012;159(7):A1114–9.

    CAS  Google Scholar 

Perovskites

  • Arakawa S, Nitta H, Hayashi S. Synthesis of lanthanum lithium tantalate powders and thin films by the sol–gel method. J Cryst Growth. 2001;231(1–2):290–4.

    CAS  Google Scholar 

  • Bohnke C, Regrag B, Le Berre F, Fourquet JL, Randrianantoandro N. Comparison of pH sensitivity of lithium lanthanum titanate obtained by sol–gel synthesis and solid state chemistry. Solid State Ion. 2005;176(1–2):73–80.

    CAS  Google Scholar 

  • García-Sánchez MF, Fernández N, Martínez-Sarrión M-L, Mestres L, Herraiz M, Escribano P, Cordoncillo E, Beltrán H. Comparison of the electrical properties of the new conductor Pr0.5Bi0.05Li0.35TiO3 prepared by sol–gel and ceramic methods. Phys Status Solidi B. 2005;242(9):1924–7.

    Google Scholar 

  • Geng H, Lan J, Mei A, Lin Y, Nan CW. Effect of sintering temperature on microstructure and transport properties of Li3xLa2/3−xTiO3 with different lithium contents. Electrochim Acta. 2011;56(9):3406–14.

    CAS  Google Scholar 

  • Inaguma Y, Liquan C, Itoh M, Nakamura T. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993;86:689–93.

    CAS  Google Scholar 

  • Itoh M, Inaguma Y, Jung WH, Chen L, Nakamura T. High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln = La, Pr, Nd, Sm). Solid State Ion. 1994;70(71):203–7.

    Google Scholar 

  • Kawai H, Kuwano J. Lithium ion conductivity of A‐site deficient perovskite solid solution La0.67 − xLi3xTiO3. J Electrochem Soc. 1994;141(7):L78–9.

    CAS  Google Scholar 

  • Kitaoka K, Kozuka H, Hashimoto T, Yoko T. Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol–gel method. J Mater Sci. 1997;32(8):2063–70.

    CAS  Google Scholar 

  • Kunshina GB, Efremov VV, Lokshin EP. Synthesis and study of ion conductivity of Li3xLa2/3–xTiO3. Russ J Electrochem. 2015;51(6):551–5.

    CAS  Google Scholar 

  • Vijayakumar M, Inaguma Y, Mashiko W, Crosnier-Lopez M-P, Bohnke C. Synthesis of fine powders of Li3xLa2/3-xTiO3 Perovskite by a polymerizable precursor method. Chem Mater. 2004;16(14):2719–24.

    CAS  Google Scholar 

  • Wöhrle T, Gómez-Romero P, Fries T, West K, Palacín MR, Casañ-Pastor N. Sol–gel synthesis of the lithium-ion conducting perovskite La0.57Li0.3TiO3 effect of synthesis and thermal treatments on the structure and conducting properties. Ionics. 1996;2(5):442–5.

    Google Scholar 

  • Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Doncel G. Hot-pressed Li0.33La0.57TiO3. J Power Sources. 2010;195(13):4124–8.

    CAS  Google Scholar 

Garnet

  • Afyon S, Krumeich F, Rupp JLM. A shortcut to garnet-type fast Li-ion conductors for all-solid-state batteries. J Mater Chem A. 2015;3(36):18636–48.

    CAS  Google Scholar 

  • Bernuy-Lopez C, Manalastas W, Lopez del Amo JM, Aguadero A, Aguesse F, Kilner JA. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem Mater. 2014;26(12):3610–7.

    CAS  Google Scholar 

  • Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R. Synthesis of garnet structured Li7+x La3Yx Zr2-x O12 (x = 0–0.4) by modified sol–gel method. J Sol–Gel Sci Technol. 2012;64(2):510–4.

    CAS  Google Scholar 

  • El Shinawi H, Janek J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium. J Power Sources. 2013;225:13–9.

    Google Scholar 

  • Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N. Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J Electrochem Soc. 2013;160(10):A1690–3.

    CAS  Google Scholar 

  • Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc. 2014;161(5):A668–74.

    CAS  Google Scholar 

  • Janani N, Ramakumar S, Dhivya L, Deviannapoorani C, Saranya K, Murugan R. Synthesis of cubic Li7La3Zr2O12 by modified sol–gel process. Ionics. 2011;17(7):575–80.

    CAS  Google Scholar 

  • Janani N, Deviannapoorani C, Dhivya L, Murugan R. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv. 2014;4(93):51228–38.

    CAS  Google Scholar 

  • Jin Y, McGinn PJ. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources. 2011;196(20):8683–7.

    CAS  Google Scholar 

  • Kokal I, Somer M, Notten PHL, Hintzen HT. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ion. 2011;185(1):42–6.

    CAS  Google Scholar 

  • Kokal I, Ramanujachary KV, Notten PHL, Hintzen HT. Sol–gel synthesis and lithium ion conduction properties of garnet-type Li6BaLa2Ta2O12. Mater Res Bull. 2012;47(8):1932–5.

    CAS  Google Scholar 

  • Kotobuki M, Koishi M. Preparation of Li7La3Zr2O12 solid electrolyte via a sol–gel method. Ceram Int. 2014;40(3):5043–7.

    CAS  Google Scholar 

  • Li Y, Han J-T, Wang C-A, Vogel SC, Xie H, Xu M, Goodenough JB. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. J Power Sources. 2012;209:278–81.

    CAS  Google Scholar 

  • Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46:7778–81.

    CAS  Google Scholar 

  • Raskovalov AA, Il’ina EA, Antonov BD. Structure and transport properties of Li7La3Zr2–0.75xAlxO12 superionic solid electrolytes. J Power Sources. 2013;238:48–52.

    CAS  Google Scholar 

  • Rosenkiewitz N, Schuhmacher J, Bockmeyer M, Deubener J. Nitrogen-free sol–gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO). J Power Sources. 2015;278:104–8.

    CAS  Google Scholar 

  • Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K. Preparation of Li7La3(Zr2−x,Nbx)O12 (x = 0–1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol–gel process. Solid State Ion. 2016;285:6–12.

    Google Scholar 

  • Sakamoto J, Rangasamy E, Kim H, Kim Y, Wolfenstine J. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12. Nanotechnology. 2013;24(42):424005.

    Google Scholar 

  • Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y. Synthesis of garnet-type Li7 − xLa3Zr2O12–1/2x and its stability in aqueous solutions. Solid State Ion. 2011;183(1):48–53.

    CAS  Google Scholar 

  • Tadanaga K, Takano R, Ichinose T, Mori S, Hayashi A, Tatsumisago M. Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem Commun. 2013;33:51–4.

    CAS  Google Scholar 

  • Takano R, Tadanaga K, Hayashi A, Tatsumisago M. Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol–gel process. Solid State Ion. 2014;255:104–7.

    CAS  Google Scholar 

  • Toda S, Ishiguro K, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Imanishi N. Low temperature cubic garnet-type CO2-doped Li7La3Zr2O12. Solid State Ion. 2013;233:102–6.

    CAS  Google Scholar 

  • Xie H, Li Y, Goodenough JB. Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure. Mater Res Bull. 2012;47(5):1229–32.

    CAS  Google Scholar 

Sulfides

  • Ito S, Nakakita M, Aihara Y, Uehara T, Machida N. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. J Power Sources. 2014;271:342–5.

    CAS  Google Scholar 

  • Liu ZC, Fu WJ, Payzant EA, Yu X, Wu ZL, Dudney NJ, Kiggans J, Hong KL, Rondinone AJ, Liang CD. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc. 2013;135:975–8.

    CAS  Google Scholar 

  • Park KH, Oh DY, Choi YE, Nam YJ, Han LL, Kim JY, Xin HL, Lin F, Oh SM, Jung YS. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv Mater. 2016;28:1874–83.

    CAS  Google Scholar 

  • Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M. Formation of Li2S-P2S5 solid electrolyte from N-methylformamide solution. Chem Lett. 2013;42:1435–7.

    CAS  Google Scholar 

  • Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M. Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. J Mater Chem A. 2014;2:5095–9.

    CAS  Google Scholar 

  • Wang YM, Liu ZQ, Zhu XL, Tang YF, Huang FQ. Highly lithium-ion conductive thin-LISICON thin film processed by low-temperature solution method. J Power Sources. 2013;224:225–9.

    CAS  Google Scholar 

  • Yubuchi S, Teragawa S, Aso K, Tadanaga K, Hayashi A, Tatsumisago M. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J Power Sources. 2015;293:941–5.

    CAS  Google Scholar 

Hybrids

  • Popall M, Durand H. Inorganic – organic copolymers as solid state Li+ electrolytes. Electrochim Acta. 1992;37:1593–7.

    CAS  Google Scholar 

  • Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B. ORMOCERs as inorganic–organic electrolytes for new solid state lithium batteries and supercapacitors. Electrochim Acta. 1998;43:1155–61.

    CAS  Google Scholar 

  • Vélez JF, Procaccini RA, Aparicio M, Mosa J. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity. Electrochim Acta. 2013;110:200–7.

    Google Scholar 

  • Wu P-W, Holm SR, Duong AT, Dunn B, Kaner RB. A sol–gel solid electrolyte with high lithium ion conductivity. Chem Mater. 1997;9:1004–11.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nataly Carolina Rosero-Navarro or Kiyoharu Tadanaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosero-Navarro, N.C., Tadanaga, K. (2018). Sol-Gel Processing of Solid Electrolytes for Li-Ion Batteries. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_142

Download citation

Publish with us

Policies and ethics