Skip to main content

Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges

  • Chapter
  • First Online:
Molecular Mechanisms of Cell Differentiation in Gonad Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 58))

Abstract

The earliest manifestation of gonadogenesis in vertebrates is the formation of the genital ridges. The genital ridges form through the transformation of monolayer coelomic epithelium into a cluster of somatic cells. This process depends on increased proliferation of coelomic epithelium and disintegration of its basement membrane, which is foreshadowed by the expression of series of regulatory genes. The earliest expressed gene is Gata4, followed by Sf1, Lhx9, Emx2, and Cbx2. The early genital ridge is a mass of somatic SF1-positive cells (gonadal precursor cells) that derive from proliferating coelomic epithelium. Primordial germ cells (PGCs) immigrate to the coelomic epithelium even in the absence of genital ridges, e.g., in mouse null mutants for Gata4. And conversely, the PGCs are not required for the formation of the genital ridges. After reaching genital ridges, the PGCs become enclosed by somatic cells derived from coelomic epithelium. Subsequently, the expression of sex-determining genes begins and the bipotential gonads differentiate into either testes or ovaries. Gonadal precursor cells, derived from coelomic epithelium, give rise to the somatic supporting cells such as Sertoli cells, follicular cells, and probably also peritubular myoid and steroidogenic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  CAS  PubMed  Google Scholar 

  • Bandiera R, Vidal VPI, Motamedi FJ (2013) WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev Cell 27:5–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barske LA, Capel B (2010) Estrogen represses SOX9 during sex determination in the red-eared slider turtle Trachemys scripta. Dev Biol 341:305–314

    Article  CAS  PubMed  Google Scholar 

  • Barsoum IB, Kaur J, Ge RS, Cooke PS, Yao HH (2013) Dynamic changes in fetal Leydig cell populations influence adult Leydig cell populations in mice. FASEB J 27:2657–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Grinberg A, Huang S, Kreidberg JA, Parker KL, Porter FD, Westphal H (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913

    Article  CAS  PubMed  Google Scholar 

  • Bland ML, Fowkes RC, Ingraham HA (2004) Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. Mol Endocrinol 18:941–952

    Article  CAS  PubMed  Google Scholar 

  • Brambell FWR (1927) The development and morphology of the gonads of the mouse—Part I. The morphogenesis of the indifferent gonad and of the ovary. Proc R Soc Lond B Biol Sci 101:391–409

    Article  Google Scholar 

  • Brennan J, Tilmann C, Capel B (2003) Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buehr M, Gu S, McLaren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development 117:273–281

    CAS  PubMed  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Palmer JS, Thiagarajan RD, Dinger ME, Lesieur E, Chiu H, Schulz A, Spiller C, Grimmond SM, Little MH, Koopman P, Wilhelm D (2012) Identification of novel markers of mouse fetal ovary development. PLoS One 7(7):e41683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, Sinclair A, Koopman P (2009) Endothelial cell migration directs testis cord formation. Dev Biol 326:112–120

    Article  CAS  PubMed  Google Scholar 

  • Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE (2004) Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 131:4095–4105

    Article  CAS  PubMed  Google Scholar 

  • Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E (2002) Guidance of primordial germ cell migration by the chemokine SDF-1. Cell 111:647–659

    Article  CAS  PubMed  Google Scholar 

  • Falconi R, Dalpiaz D, Zaccanti F (2004) Ultrastructural aspects of gonadal morphogenesis in Bufo bufo (Amphibia Anura) 1. Sex differentiation. J Exp Zool A 301:378–388

    Article  Google Scholar 

  • Flesken-Nikitin A, Hwang CI, Cheng CY, Michurina TV, Enikolopov G, Nikitin AY (2013) Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francavilla S, Cordeschi G, Properzi G, Concordia N, Cappa F, Pozzi V (1990) Ultrastructure of fetal human gonad before sexual differentiation and during early testicular and ovarian development. J Submicrosc Cytol Pathol 22:389–400

    CAS  PubMed  Google Scholar 

  • Fujimoto Y, Tanaka SS, Yamaguchi YL, Kobayashi H, Kuroki S, Tachibana M, Shinomura M, Kanai Y, Morohashi K, Kawakami K, Nishinakamura R (2013) Homeoproteins Six1 and Six4 regulate male sex determination and mouse gonadal development. Dev Cell 26:416–430

    Article  CAS  PubMed  Google Scholar 

  • Gomperts M, Wylie C, Heasman J (1994) Primordial germ cell migration. Ciba Found Symp 182:121–134

    CAS  PubMed  Google Scholar 

  • Gropp A, Ohno S (1966) The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle Bos taurus. Z Zellforsch Mikrosk Anat 74:505–528

    Article  CAS  PubMed  Google Scholar 

  • Hacker A, Capel B, Goodfellow P, Lovell-Badge R (1995) Expression of Sry, the mouse sex determining gene. Development 121:1603–1614

    CAS  PubMed  Google Scholar 

  • Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  CAS  PubMed  Google Scholar 

  • Hatano O, Takakusu A, Nomura M, Morohashi K (1994) Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells 1:663–671

    Article  Google Scholar 

  • Hsieh-Li HM, Witte DP, Weinstein M, Branford W, Li H, Small K, Potter SS (1995) Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 121:1373–1385

    CAS  PubMed  Google Scholar 

  • Hu YC, Okumura LM, Page DC (2013) Gata4 is required for formation of the genital ridge in mice. PLoS Genet 9(7):e1003629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummitzsch K, Irving-Rodgers HF, Hatzirodos N et al (2013) A new model of development of the mammalian ovary and follicles. PLoS ONE 8(2), e55578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y (1996) SF-1: a key regulator of development and function in the mammalian reproductive system. Acta Paediatr Jpn 38:412–419

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Shen WH, Ingraham HA, Parker KL (1994) Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol Endocrinol 8:654–662

    CAS  PubMed  Google Scholar 

  • Iwasawa H, Yamaguchi K (1984) Ultrastructural study of gonadal development in Xenopus laevis. Zool Sci 1:591–600

    Google Scholar 

  • Karl J, Capel B (1995) Three-dimensional structure of the developing mouse genital ridge. Philos Trans R Soc Lond B Biol Sci 350:235–242

    Article  CAS  PubMed  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333

    Article  CAS  PubMed  Google Scholar 

  • Katoh-Fukui Y, Miyabayashi K, Komatsu T, Owaki A, Baba T, Shima Y, Kidokoro T, Kanai Y, Schedl A, Wilhelm D, Koopman P, Okuno Y, Morohashi K (2012) Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153:913–924

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Furusawa S, Matsuda H, Takase M, Nakamura M (2001) Expression of steroidogenic factor-1 in frog embryo and developing gonad. Gen Comp Endocrinol 123:13–22

    Article  CAS  PubMed  Google Scholar 

  • Kent J, Coriat AM, Sharpe PT, Hastie ND, van Heyningen V (1995) The evolution of WT1 sequence and expression pattern in the vertebrates. Oncogene 11:1781–1792

    CAS  PubMed  Google Scholar 

  • Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B (2007) Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A 104:16558–16563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  CAS  PubMed  Google Scholar 

  • Kusaka M, Katoh-Fukui Y, Ogawa H, Miyabayashi K, Baba T, Shima Y, Sugiyama N, Sugimoto Y, Okuno Y, Kodama R, Iizuka-Kogo A, Senda T, Sasaoka T, Kitamura K, Aizawa S, Morohashi K (2010) Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151:5893–5904

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chen W, Wang D, Zhou L, Sakai F et al (2012) GATA4 is involved in the gonadal development and maturation of the teleost fish tilapia, Oreochromis niloticus. J Reprod Dev 58:237–242

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Peng J, Matzuk MM, Yao HH (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6:6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997) Male-specific cell migration into the developing gonad. Curr Biol 7:958–968

    Article  CAS  PubMed  Google Scholar 

  • Mazaud S, Oreal E, Guigon CJ, Carre-Eusebe D, Magre S (2002) Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation. Gene Expr Patterns 2:373–377

    Article  CAS  PubMed  Google Scholar 

  • McLaren A (1991) Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 13:151–156

    Article  CAS  PubMed  Google Scholar 

  • Merchant-Larios H (1979) Origin of the somatic cells in the rat gonad: an autoradiographic approach. Ann Biol Anim Biochim Biophys 19:1219–1229

    Article  Google Scholar 

  • Merchant-Larios H, Villalpando I (1981) Ultrastructural events during early gonadal development in Rana pipiens and Xenopus laevis. Anat Rec 199:349–360

    Article  CAS  PubMed  Google Scholar 

  • Merchant-Larios H, Moreno-Mendoza N, Buehr M (1993) The role of the mesonephros in cell differentiation and morphogenesis of the mouse fetal testis. Int J Dev Biol 37:407–415

    CAS  PubMed  Google Scholar 

  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664

    CAS  PubMed  Google Scholar 

  • Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS (2008) A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol Biol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Molyneaux KA, Stallock J, Schaible K, Wylie C (2001) Time-lapse analysis of living mouse germ cell migration. Dev Biol 240:488–498

    Article  CAS  PubMed  Google Scholar 

  • Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O’Brien W, Raz E, Littman D, Wylie C, Lehmann R (2003) The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130:4279–4286

    Article  CAS  PubMed  Google Scholar 

  • Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B (2012) Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 86:37

    Article  PubMed  Google Scholar 

  • Nef S, Parada LF (2000) Hormones in male sexual development. Genes Dev 14:3075–3086

    Article  CAS  PubMed  Google Scholar 

  • Oreal E, Mazaud S, Picard JY, Magre S, Carre-Eusebe D (2002) Different patterns of anti-Mullerian hormone expression, as related to DMRT1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Dev Dyn 225:221–232

    Article  CAS  PubMed  Google Scholar 

  • Paranko J (1987) Expression of type I and III collagen during morphogenesis of fetal rat testis and ovary. Anat Rec 219:91–101

    Article  CAS  PubMed  Google Scholar 

  • Pelliniemi LJ (1975) Ultrastructure of gonadal ridge in male and female pig embryos. Anat Embryol (Berl) 147:20–34

    CAS  Google Scholar 

  • Pelliniemi LJ, Frojdman K, Sundstrom J, Pollanen P, Kuopio T (1998) Cellular and molecular changes during sex differentiation of embryonic mammalian gonads. J Exp Zool 281:482–493

    Article  CAS  PubMed  Google Scholar 

  • Pereda J, Pozo J, Motta PM (2001) Is there a mesonephric cell contribution to the gonadal primordium before sexual differentiation in humans?: an ultrastructural study. Ital J Anat Embryol 106:143–154

    CAS  PubMed  Google Scholar 

  • Piprek RP (2009a) Genetic mechanisms underlying male sex determination in mammals. J Appl Genet 50:347–360

    Article  CAS  PubMed  Google Scholar 

  • Piprek RP (2009b) Molecular mechanisms underlying female sex determination—antagonism between female and male pathway. Folia Biol 57:105–113

    Article  CAS  Google Scholar 

  • Piprek RP (2010) Molecular machinery of gonadal differentiation in mammals. Int J Dev Biol 54:779–786

    Article  CAS  PubMed  Google Scholar 

  • Piprek RP, Pecio A, Szymura JM (2010) Differentiation and development of gonads in the yellow-bellied toad, Bombina variegata L. 1758 (Amphibia: Anura: Bombinatoridae). Zool Sci 27:47–55

    Article  PubMed  Google Scholar 

  • Pitetti JL, Calvel P, Romero Y, Conne B, Truong V, Papaioannou MD, Schaad O, Docquier M, Herrera PL, Wilhelm D, Nef S (2013) Insulin and IGF1 receptors are essential for XX and XY gonadal differentiation and adrenal development in mice. PLoS Genet 9:e1003160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh M (1991) Histogenesis and organogenesis of the gonad in human embryos. J Anat 177:85–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmahl J, Capel B (2003) Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 258:264–276

    Article  CAS  PubMed  Google Scholar 

  • Schmahl J, Eicher EM, Washburn LL, Capel B (2000) Sry induces cell proliferation in the mouse gonad. Development 127:65–73

    CAS  PubMed  Google Scholar 

  • Schnabel CA, Selleri L, Cleary ML (2003) Pbx1 is essential for adrenal development and urogenital differentiation. Genesis 37:123–130

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Sinclair AH (2004) Sex determination: insights from the chicken. Bioessays 26:120–132

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Smith MJ, Sinclair AH (1999) Expression of chicken steroidogenic factor-1 during gonadal sex differentiation. Gen Comp Endocrinol 113:187–196

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Kanno Y, Chuma S et al (2001) Pod-1/Capsulin shows a sex- and stage-dependent expression pattern in the mouse gonad development and represses expression of Ad4BP/SF-1. Mech Dev 102:135–144

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SS, Nishinakamura R (2014) Regulation of male sex determination: genital ridge formation and Sry activation in mice. Cell Mol Life Sci 71:4781–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimura A, Iwasawa H (1988) Ultrastructural observations on the origin and differentiation of somatic cells during gonadal development in the frog Rana nigromaculata. Dev Growth Differ 30:681–691

    Article  Google Scholar 

  • Tanimura A, Iwasawa H (1989) Origin of somatic cells and histogenesis in the primordial gonad of the Japanese tree frog Rhacophorus arboreus. Anat Embryol 180:165–173

    Article  CAS  PubMed  Google Scholar 

  • Taylor H, Vanden Heuvel GB, Igarashi P (1997) A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 57:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Tilmann C, Capel B (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883–2890

    CAS  PubMed  Google Scholar 

  • Wartenberg H, Kinsky I, Viebahn C, Schmolke C (1991) Fine structural characteristics of testicular cord formation in the developing rabbit gonad. J Electron Microsc Tech 19:133–157

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Englert C (2002) The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev 16:1839–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie CC, Heasman J (1976) The formation of the gonadal ridge in Xenopus laevis. I. A light and transmission electron microscope study. J Embryol Exp Morphol 35:125–138

    CAS  PubMed  Google Scholar 

  • Yao HH, DiNapoli L, Capel B (2004) Cellular mechanisms of sex determination in the red-eared slider turtle, Trachemys scripta. Mech Dev 121:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga K, Hess DL, Hendrickx AG, Zamboni L (1988) The development of the sexually indifferent gonad in the prosimian, Galago crassicaudatus crassicaudatus. Am J Anat 181:89–105

    Article  CAS  PubMed  Google Scholar 

Download references

Grant Support

RPP was supported by the project financed by the National Science Centre assigned on the basis of the decision number DEC-2013/11/D/NZ3/00184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal P. Piprek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piprek, R.P., Kloc, M., Kubiak, J.Z. (2016). Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges. In: Piprek, R. (eds) Molecular Mechanisms of Cell Differentiation in Gonad Development. Results and Problems in Cell Differentiation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-31973-5_1

Download citation

Publish with us

Policies and ethics