Skip to main content

Anatomy of the Skin and Pathophysiology of Radiation Dermatitis

  • Chapter
  • First Online:
Skin Care in Radiation Oncology

Abstract

The skin is an organ covering the external surface of the body. It functions as a protective barrier against injury, infection, and ultraviolet radiation. It also plays a role in regulating body temperature, vitamin D production, and sensory processing of environmental stimuli. Radiation dermatitis is a skin condition associated with therapeutic ionizing radiation exposure. This may develop during radiation of primary skin cancer or as a sequela of radiation of deeper structures, as the rapidly dividing cells of the skin are prone to radiation injury during treatment. Acute radiation dermatitis generally develops within the first few weeks of treatment as visible erythema and may progress to blistering and desquamation of the skin. Most of the changes are reversible. Chronic radiation dermatitis appears after a latent period of months to years. Poikilodermic changes such as telangiectasia or mottled hyper-/hypopigmentation are characteristic, as well as skin atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonen P, Hamilton C, Ferguson S, Ostwald P, O’Brien M, O’Brien P, et al. Do inflammatory processes contribute to radiation induced erythema observed in the skin of humans? Radiother Oncol. 1998;46:73–82.

    Article  CAS  PubMed  Google Scholar 

  2. Schmuth M, Sztankay A, Weinlich G, Linder DM, Wimmer MA, Fritsch PO, et al. Permeability barrier function of skin exposed to ionizing radiation. Arch Dermatol. 2001;137:1019–23.

    CAS  PubMed  Google Scholar 

  3. Archambeau JO, Pezner R, Wasserman T. Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys. 1995;31:1171–85. doi:10.1016/0360-3016(94)00423-I.

    Article  CAS  PubMed  Google Scholar 

  4. Salvo N, Barnes E, van Draanen J, Stacey E, Mitera G, Breen D, et al. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr Oncol. 2010;17:94–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Freedman GM, Anderson PR, Bleicher RJ, Litwin S, Li T, Swaby RF, et al. Five-year local control in a phase II study of hypofractionated intensity modulated radiation therapy with an incorporated boost for early stage breast cancer. Int J Radiat Oncol Biol Phys. 2012;84:888–93. doi:10.1016/j.ijrobp.2012.01.091.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Turesson I, Notter G. The influence of fraction size in radiotherapy on the late normal tissue reaction—II: comparison of the effects of daily and twice-A-week fractionation on human skin. Int J Radiat Oncol Biol Phys. 1984;10:599–606.

    Article  CAS  PubMed  Google Scholar 

  7. Rupprecht R, Lippold A, Auras C, Bramkamp G, Breitkopf C, Elsmann HJ, et al. Late side-effects with cosmetic relevance following soft X-ray therapy of cutaneous neoplasias. J Eur Acad Dermatol Venereol. 2007;21:178–85. doi:10.1111/j.1468-3083.2006.01886.x.

    Article  CAS  PubMed  Google Scholar 

  8. Bentzen SM, Overgaard M. Relationship between early and late normal-tissue injury after postmastectomy radiotherapy. Radiother Oncol. 1991;20:159–65.

    Article  CAS  PubMed  Google Scholar 

  9. Lilla C, Ambrosone CB, Kropp S, Helmbold I, Schmezer P, von Fournier D, et al. Predictive factors for late normal tissue complications following radiotherapy for breast cancer. Breast Cancer Res Treat. 2007;106:143–50. doi:10.1007/s10549-006-9480-9.

    Article  PubMed  Google Scholar 

  10. Toledano A, Garaud P, Serin D, Fourquet A, Bosset JF, Breteau N, et al. Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys. 2006;65:324–32. doi:10.1016/j.ijrobp.2005.12.020.

    Article  CAS  PubMed  Google Scholar 

  11. Meehan SA, LeBoit PE. An immunohistochemical analysis of radiation fibroblasts. J Cutan Pathol. 1997;24:309–13.

    Article  CAS  PubMed  Google Scholar 

  12. Malkinson FD, Hanson WR. Physiology, biochemistry, and molecular biology of the skin. Oxford: Oxford University Press; 1991.

    Google Scholar 

  13. Hymes SR, Strom EA, Fife C. Radiation dermatitis: clinical presentation, pathophysiology, and treatment 2006. J Am Acad Dermatol. 2006;54:28–46. doi:10.1016/j.jaad.2005.08.054.

    Article  PubMed  Google Scholar 

  14. Mancini ML, Sonis ST. Mechanisms of cellular fibrosis associated with cancer regimen-related toxicities. Front Pharmacol. 2014;5:51. doi:10.3389/fphar.2014.00051.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, et al. Pravastatin limits radiation-induced vascular dysfunction in the skin. J Invest Dermatol. 2009;129:1280–91. doi:10.1038/jid.2008.360.

    Article  CAS  PubMed  Google Scholar 

  16. Muller K, Meineke V. Radiation-induced alterations in cytokine production by skin cells. Exp Hematol. 2007;35:96–104. doi:10.1016/j.exphem.2007.01.017.

    Article  PubMed  Google Scholar 

  17. Okunieff P, Xu J, Hu D, Liu W, Zhang L, Morrow G, et al. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int J Radiat Oncol Biol Phys. 2006;65:890–8. doi:10.1016/j.ijrobp.2006.03.025.

    Article  CAS  PubMed  Google Scholar 

  18. Xiao Z, Su Y, Yang S, Yin L, Wang W, Yi Y, et al. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006;65:882–9. doi:10.1016/j.ijrobp.2006.01.031.

    Article  CAS  PubMed  Google Scholar 

  19. Pan J, Su Y, Hou X, He H, Liu S, Wu J, et al. Protective effect of recombinant protein SOD-TAT on radiation-induced lung injury in mice. Life Sci. 2012;91:89–93. doi:10.1016/j.lfs.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  20. Eckes B, Zigrino P, Kessler D, Holtkotter O, Shephard P, Mauch C, et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 2000;19:325–32.

    Article  CAS  PubMed  Google Scholar 

  21. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40. doi:10.1038/nm.2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ueha S, Shand FH, Matsushima K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front Immunol. 2012;3:71. doi:10.3389/fimmu.2012.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Canney PA, Dean S. Transforming growth factor beta: a promotor of late connective tissue injury following radiotherapy? Br J Radiol. 1990;63:620–3. doi:10.1259/0007-1285-63-752-620.

    Article  CAS  PubMed  Google Scholar 

  24. Schultze-Mosgau S, Wehrhan F, Grabenbauer G, Amann K, Radespiel-Troger M, Neukam FW, et al. Transforming growth factor beta1 and beta2 (TGFbeta2 / TGFbeta2) profile changes in previously irradiated free flap beds. Head Neck. 2002;24:33–41.

    Article  PubMed  Google Scholar 

  25. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18:816–27. doi:10.1096/fj.03-1273rev.

    Article  CAS  PubMed  Google Scholar 

  26. Flanders KC, Major CD, Arabshahi A, Aburime EE, Okada MH, Fujii M, et al. Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. Am J Pathol. 2003;163:2247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novak ML, Koh TJ. Macrophage phenotypes during tissue repair. J Leukoc Biol. 2013;93:875–81. doi:10.1189/jlb.1012512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burris 3rd HA, Hurtig J. Radiation recall with anticancer agents. Oncologist. 2010;15:1227–37. doi:10.1634/theoncologist.2009-0090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lawrence TS, Blackstock AW, McGinn C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 2003;13:13–21. doi:10.1053/srao.2003.50002.

    Article  PubMed  Google Scholar 

  30. Lacouture ME, Maitland ML, Segaert S, Setser A, Baran R, Fox LP, et al. A proposed EGFR inhibitor dermatologic adverse event-specific grading scale from the MASCC skin toxicity study group. Support Care Cancer. 2010;18:509–22. doi:10.1007/s00520-009-0744-x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Arron MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arron, S. (2016). Anatomy of the Skin and Pathophysiology of Radiation Dermatitis. In: Fowble, B., Yom, S., Yuen, F., Arron, S. (eds) Skin Care in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-31460-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31460-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31458-7

  • Online ISBN: 978-3-319-31460-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics